Research Article
Gearing Present Oil Palm (Elaeis guineensis Jacq.) Agroecosystems in the Soconusco, Mexico Towards Sustainable and Good Agricultural Practices
Issue:
Volume 10, Issue 6, December 2024
Pages:
259-274
Received:
27 September 2024
Accepted:
21 October 2024
Published:
13 November 2024
DOI:
10.11648/j.ijaas.20241006.11
Downloads:
Views:
Abstract: Dialectic interactions between the Sustainable Development Goals (SDG´s), the 2030 Agenda, planetary boundaries (PB) and good agricultural practices (GAP) in agroecosystems with oil palm have rarely been discussed. The main goal of this publication is analyzing reflections and realities about interactions between the 17 SDGs, the 2030 Agenda, nine PB and GAP in agroecosystems with oil palm. The methodological approach included the results of the different field practices during the First International Course of agroecological oil palm production in the Soconusco and consisted of a documentary analysis and focus group discussions. This offered possibilities to analyze qualitative and participative results of the traffic light system methodology (TLSM) and its key issues. The area of oil palm growing in the Soconusco and Istmo-Costa covers 4.37 % and was planted without burning of forestland. The SDG´s that are most strengthened with correct and timely management of the 13 key issues of TLSM, are: SDG2 (Zero Hunger), SDG3 (Good Health), SDG15 (Life on Earth), SDG6 (Clean Water and Sanitation), SDG13 (Climate Action) and SDG1 (Ending Poverty), being addressed in 100%, 69%, 69%, 54%, 54% and 31% of the key issues of the TLSM, respectively. Five PB reflect the realities in the Soconusco. For the biosphere integrity in the oil palm agroecosystems of the Soconusco, the oil palm stands out with growth recordings up to 10 m eco-height and 100000 m³/ha eco-volume, outperforming the annual oil crops sunflower, rapeseed and soybean. Similarly, oil palm dominates the three annual crops for their respective Eco-capacity, decreasing from 41.54 for oil palm down to 0.3 for soybean. The biochemical flow in the oil palm agroecosystems of the Soconusco reveals that the extraction of N from the soil to produce one ton of palm oil is 47 kg, which is 110.6%, 104.3% and 570% lower than that extracted to produce one ton oil of rapeseed, sunflower and soybean, respectively. Additionally, one ton of palm oil extracts 8 kg of P from the soil, which is lesser than that extracted to produce one ton oil from rapeseed, sunflower and soybean. In all intercropping agroecosystems simulations in the Soconusco based on oil palm the most representative indicators of the combined intercrop assortment, are eco-capacity and/or recycling indices as e.g. the K-Olson index of total yearly litter fall. Eco-volume remains a major yardstick for monitoring the partial fulfillment of the five most relevant PB.
Abstract: Dialectic interactions between the Sustainable Development Goals (SDG´s), the 2030 Agenda, planetary boundaries (PB) and good agricultural practices (GAP) in agroecosystems with oil palm have rarely been discussed. The main goal of this publication is analyzing reflections and realities about interactions between the 17 SDGs, the 2030 Agenda, nine ...
Show More
Research Article
Biomathematical Integration of the Functional Coexistence Between Macrofauna and Microorganisms in Nicaraguan Agroecosystems: Tau Index (τ)
Issue:
Volume 10, Issue 6, December 2024
Pages:
275-288
Received:
2 October 2024
Accepted:
21 October 2024
Published:
13 November 2024
DOI:
10.11648/j.ijaas.20241006.12
Downloads:
Views:
Abstract: Agroecology as a science and Biomathematics provide elements that support precision in agroecological designs. The present study was conducted in 10 agroecosystems in Nicaragua located in five departments (Chinandega, Carazo, Matagalpa, Estelí and Boaco). These sites present diversified systems with crops (corn, rice, beans, coffee), forest and cattle. 250 samples of microorganisms and 250 samples of macrofauna were collected and taken to the Laboratories of the National Agrarian University of Nicaragua. The results obtained describe an abundance of 2084 and a richness of 123 families in macrofauna in interaction with 19 genera of microorganisms. The design of 3D pyramidal graphs represented the functional biological interaction on the x, y, z axes between macrofauna families and genera of microorganisms. The design of the Tau index (τ) equation and the obtained values allow us to elucidate the coexistence between organisms. The 20 most significant macrofauna families with their respective positive Tau indices were: Lumbricidae (3.864), Rhinotermitidae (2.486), Acanthodrilidae (0.706), Agelenidae (0.265), Styloniscidae (0.247), Armadillidae (0.208), Porcellionidae (0.19), Polydesmidae (0.178), Histeridae (0.173) and Mycetophilidae (0.168). The families with negative Tau index were: Formicidae (-1.953), Scarabaeidae (-1.438), Chrysomelidae (-0.173), Ixodidae (-0.166), Elateridae (-0.125), Noctuidae (-0.125), Gryllidae (-0.105), Tettigoniidae (-0.74), Culicidae (-0.71) and Cicadidae (-0.05). The genera of microorganisms were: Aspergillus sp., Aureobasidium sp., Bacillus sp., Candida sp., Fusarium sp., Gliocladium sp., Macrophomina sp., Mucor sp., Paecilomyces sp., Penicillium sp., Pseudomonas sp., Pythium sp., Rhizoctonia sp., Rhizopus sp., Sarcina sp., Streptomyces sp., Torula sp., Trichoderma sp. and Verticillium sp. The Lumbricidae family reached the highest interaction in the 3D graphs and the best values of the Tau index. The functional biological diversity of species is irreplaceable by synthetic means. Synergistic actions should be promoted to increase populations of macrofauna that guarantee the coexistence of beneficial microorganisms for the design of agroecosystems with precise biological interactions.
Abstract: Agroecology as a science and Biomathematics provide elements that support precision in agroecological designs. The present study was conducted in 10 agroecosystems in Nicaragua located in five departments (Chinandega, Carazo, Matagalpa, Estelí and Boaco). These sites present diversified systems with crops (corn, rice, beans, coffee), forest and cat...
Show More