-
Analysis of Peroxidase Activity and Total Phenol from Spathoglottis plicata Bl Plantlet Toward to Fusarium oxysporum
Endang Nurcahyani,
Rochmah Agustrina,
Erdi Suroso,
Gardis Andari
Issue:
Volume 2, Issue 6, November 2016
Pages:
79-82
Received:
25 July 2016
Accepted:
14 September 2016
Published:
14 October 2016
Abstract: Ground orchid (Spathoglottis plicata Bl) is an ornamental plant widely appreciated by the public because it has a beautiful shape, colour and flower formation. One of trigger decrease of S. plicata production caused by Fusarium wilt which is caused the Fusarium oxysporum. Using resistant S. plicata cultivars are expected to be an alternative to control the disease. A resistant S. plicatta plantlet to Fo has been initiated by in vitro selection on medium countaining fusaric acid on different concentrations. This study aims to determine the peroxidase activity and total phenol of S. plicata plantlet. Research conducted at the in vitro Laboratory, Department of Biology, Faculty of Mathematics and Natural of Sciences, University of Lampung. The study design was Completely Randomized. Data analyzed using Analysis of Variance and if significantly different followed by Least Significant Difference (LSD) test 5% significance level. The results showed that increasing the concentration of fusaric acid, it also increases the peroxidase enzyme activity and total phenol in plantlet that resistant to F. oxysporum. At a concentration of 40 ppm, peroxidase activity and the highest total phenol content are 0.536 unit/mg/second and 10.33%.
Abstract: Ground orchid (Spathoglottis plicata Bl) is an ornamental plant widely appreciated by the public because it has a beautiful shape, colour and flower formation. One of trigger decrease of S. plicata production caused by Fusarium wilt which is caused the Fusarium oxysporum. Using resistant S. plicata cultivars are expected to be an alternative to con...
Show More
-
Effect of Relative Humidity and Temperature on Shelf Life of Sorghum, Lentil and Niger Seeds
Fikirte Assefa,
Kalyani Srinivasan
Issue:
Volume 2, Issue 6, November 2016
Pages:
83-91
Received:
20 April 2016
Accepted:
7 July 2016
Published:
2 November 2016
Abstract: Seeds of three crops viz. lentil, sorghum and niger were compared for their storability at different relative humidities (RH) and temperatures. Two varieties per crop were selected i.e. lentil (L-4076 and L-4578), sorghum (CSV-15 and CSV-216R.) and niger (GA-10 and JNC-6) for this study. The humidity levels selected were 95, 75, 50, 33 and 5.5% which were maintained using saturated salt solutions of KNO3, NaCl, Ca(NO3)2, MgCl2 and ZnCl2 respectively at ambient, 10 and35°C temperatures. Total duration of the experiment was 90 days for storage at all RH except the highest (95%) in which the duration was reduced to 20 days. Monitoring for seed germination, vigour and electrical conductivity was carried out at one-month interval in all the seed lots except those stored at highest RH at three different temperatures. In the later, the seeds were monitored at 10 days interval for the above-mentioned parameters. Results revealed that increased rate of deterioration occurred irrespective of type of seeds or cultivars at high RH and temperature. Germination and vigour index declined significantly when seeds were stored at very high (95%) to high (75%) RH and 35°C temperature while the electrical conductivity recorded a steep increase at these conditions implying their usefulness as indices for seed quality loss.
Abstract: Seeds of three crops viz. lentil, sorghum and niger were compared for their storability at different relative humidities (RH) and temperatures. Two varieties per crop were selected i.e. lentil (L-4076 and L-4578), sorghum (CSV-15 and CSV-216R.) and niger (GA-10 and JNC-6) for this study. The humidity levels selected were 95, 75, 50, 33 and 5.5% whi...
Show More
-
Pathogenic Variability of Angular Leaf Spot Disease of Common Bean in Western Kenya
Robert Kiptabut Leitich,
D. O. Omayio,
B. Mukoye,
B. C. Mangeni,
D. W. Wosula,
W. Arinaitwe,
R. M. Otsyula,
H. K. Were,
M. M. Abang
Issue:
Volume 2, Issue 6, November 2016
Pages:
92-98
Received:
29 September 2016
Accepted:
20 October 2016
Published:
8 November 2016
Abstract: Common bean (Phaseolus vulgaris L.) is the most important legume and is second only to maize as a food crop in Kenya. Despite its importance, bean productivity is declining in western Kenya due to several biotic and abiotic constraints including several fungal diseases. Among these diseases, angular leaf spot (Phaeoisariopsis griseola (Sacc.) is one of the most damaging and widely distributed diseases of common bean, causing yield losses as high as 80%. Furthermore, the problem is compounded by limited information on pathogen distribution and variability in western Kenya hindering breeding for angular leaf spot (ALS) resistance. Therefore, this study was carried out to characterise the ALS pathogen (Phaeoisariopsis griseola) (Sacc.) into different pathotypes. Forty-two isolates of P. griseola were collected from different bean growing areas of western Kenya and characterized into six pathotypes (63:11, 30:26, 33:23, 63:7, 31:10 and 63:63) by use of 12 differential cultivars. Advanced lines and commercial varieties obtained from KALRO-Kakamega were separately inoculated with six pathotypes of P. griseola and evaluated for disease reaction in the screenhouse. A screening trial of Mesoamerican and Andean bean genotypes showed that two varieties were tolerant (disease scores 1 to 3), fourteen varieties were moderately resistant (scores 4 to 6) and four varieties were susceptible (7 to 9). The tolerant varieties were small-seeded, while the susceptible varieties were mostly large-seeded.
Abstract: Common bean (Phaseolus vulgaris L.) is the most important legume and is second only to maize as a food crop in Kenya. Despite its importance, bean productivity is declining in western Kenya due to several biotic and abiotic constraints including several fungal diseases. Among these diseases, angular leaf spot (Phaeoisariopsis griseola (Sacc.) is on...
Show More
-
Effect of Pre-emergence Herbicides on Weeds, Nodulation and Yield of Cowpea [Vigna unguiculata (L.) WALP.] at Haik and Mersa in Wollo, Northern Ethiopia
Getachew Mekonnen,
Mekdes Dessie
Issue:
Volume 2, Issue 6, November 2016
Pages:
99-111
Received:
8 July 2016
Accepted:
11 November 2016
Published:
21 December 2016
Abstract: The experiment was conducted at Mersa and Haik, northern Ethiopia during the 2014 main cropping season to assess the effect of pre-emergence s-metolachlor and pendimethalin on nodulation, and yield of cowpea. There were 12 treatments comprising: s-metolachlor (1.0, 1.5 and 2.0 kg ha-1); pendimethalin (1.0, 1.3 and 1.6 kg ha-1), s-metolachlor at 1.0 kg ha-1 + hand weeding at 5 weeks after crop emergence (WAE), pendimethalin at 1.0 kg ha-1 + hand weeding at 5 WAE, one hand weeding at 2 WAE, two hand weeding at 2 and 5 WAE, weed free and weedy checks. The treatments were arranged in randomized complete block design with three replications. The minimum weed dry weight was registered with the application 2.0 kg ha-1 of s-metolachlor at both locations; however, at 55 DAE and at harvest, weeds accumulated significantly lower dry weight due to s-metolachlor 1.0 kg ha-1 and pendimethalin 1.0 kg ha-1 each pendimethalin superimposed with hand weeding at both locations. The interaction of location with weed management practices was significant on number and dry weight of nodules, number of pods plant-1, grain and aboveground dry biomass yield and yield loss. The maximum grain yield (4277 kg ha-1) was obtained in complete weed free treatment at Mersa which was statistically in parity with complete weed free and two hand weeding treatments at Haik and Mersa, respectively. Due to weed infestation throughout the crop growth, the highest yield loss (70.8%) was recorded at Haik while it was 47.5% at Mersa.
Abstract: The experiment was conducted at Mersa and Haik, northern Ethiopia during the 2014 main cropping season to assess the effect of pre-emergence s-metolachlor and pendimethalin on nodulation, and yield of cowpea. There were 12 treatments comprising: s-metolachlor (1.0, 1.5 and 2.0 kg ha-1); pendimethalin (1.0, 1.3 and 1.6 kg ha-1), s-metolachlor at 1.0...
Show More
-
Selenium in Animal Nutrition: Deficiencies in Soils and Forages, Requirements, Supplementation and Toxicity
Uttam Saha,
Abioye Fayiga,
Dennis Hancock,
Leticia Sonon
Issue:
Volume 2, Issue 6, November 2016
Pages:
112-125
Received:
27 October 2016
Accepted:
11 November 2016
Published:
27 December 2016
Abstract: Selenium (Se), an essential nutrient for animals and humans, occurs as selenoproteins in enzymes. It is very important in animal nutrition because it functions as an anti-oxidant assisted by vitamin E. Se deficiency is a major problem which can be reduced or prevented by supplementation with inorganic or organic sources of Se. However, excessive supplementation and consumption of Se accumulating plants may lead to Se toxicity and animal poisoning. Minimal lethal dose for animals range between 1.5 to 8 mg kg-1 Se live body weight and maximum tolerable concentration of Se in forages is 5 mg kg-1. Se deficiency in animals also depends greatly on Se content of forages and soils. Se deficient soils contain less than 0.6 mg kg-1 and can be fertilized to increase Se content of forages or pastures for animals. Forages are classified as adequate, marginally deficient and deficient in Se and contain 0.2, 0.1-0.199 and <0.1 mg kg-1Se respectively. Silages can also be fortified with selenium to meet the requirements for Se in animals. The requirements of Se for animals need to be met to provide adequate animal and human nutrition.
Abstract: Selenium (Se), an essential nutrient for animals and humans, occurs as selenoproteins in enzymes. It is very important in animal nutrition because it functions as an anti-oxidant assisted by vitamin E. Se deficiency is a major problem which can be reduced or prevented by supplementation with inorganic or organic sources of Se. However, excessive su...
Show More