Hybrid Vigor, Heterosis, and Genetic Parameters in Maize by Diallel Cross Analysis
Kareema Mohamad Wuhiab,
Banan Hassan Hadi,
Wajeeha Abed Hassan
Issue:
Volume 2, Issue 1, January 2016
Pages:
1-11
Received:
4 October 2015
Accepted:
4 January 2016
Published:
21 January 2016
Abstract: A field experiment was conducted at the experimental farm of Field Crop Sciences Department, College of Agriculture / University of Baghdad. Five maize (Zea mays L.) inbred lines were tested for general and specific combining ability by using full diallel cross. Seed of inbred were planted in spring and fall season of 2013. In first season, seeds were planted, and at anthesis crossing between inbreds were done. In the fall season varietal trial for crosses and parents were conducted by using RCBD design with four replications to evaluate crosses and parents and to estimate some genetic parameters. Statistical analysis revealed high significant increases for all traits, ear height, leaves area, no of ears/plant, no. of grain/plant, grain weight, dry weight/plant and yield t/ ha. The genetic analysis showed that inbred 2 was superior and gave high grain yield (5.74 t/ha.), due to its high dry weight (207.82g/plant), and no. of grain /plant (704.49). In addition, it had positive GCA. The reciprocity cross 4×1 was superior and gave highest yield 6.98 t/ha. due to superiority in 100 grain weight (18.53g). It also had positive and higher hybrid vigor (45%) for grain yield, and positive effect of sca (1.56). All reciprocity crosses were higher than crosses; the highest one is 4 × 3, which gave 8.69 t/ha. All parent and crosses had had positive variance for yield, but all reciprocity crosses were negative. Mean square for SCA and RCA were more than GCA, and therefore the σ2 GCA was less which made σ2 A less than σ2D and σ2 Dr, so σ2 GCA / σ2 SCA and σ2 GCA / σ2 RCA became less than one and the degree of dominance was more than one, making h2 n.s very little. Thus, the trait was governed by non-additive gene action. We can conclude that there is a possibility of using superior inbreds to produce hybrids or use selection for it and produce synthetic varieties.
Abstract: A field experiment was conducted at the experimental farm of Field Crop Sciences Department, College of Agriculture / University of Baghdad. Five maize (Zea mays L.) inbred lines were tested for general and specific combining ability by using full diallel cross. Seed of inbred were planted in spring and fall season of 2013. In first season, seeds w...
Show More
Detection of Salt Tolerant Gene (TaNIP) and Its Expression in Three Selected Wheat Genotypes Through Plant Breeding Programs Under Salinity Conditions
Ibrahim Ismail Al-Mashhadani,
Duha Mysire Majeed,
Eman Noaman Ismail,
Maysaa Sameer Kadhim
Issue:
Volume 2, Issue 1, January 2016
Pages:
12-16
Received:
29 December 2015
Accepted:
4 January 2016
Published:
23 January 2016
Abstract: High soil salinity is a major abiotic stress in plant production worldwide. TaNIP gene was identified and cloned through the gene chip expression analysis of a salt- tolerant wheat mutant RH8706-49 under salt stress. Quantitative reverse transcription – PCR (Q-RT-PCR) was used to detect TaNIP salt tolerant gene and its expression in some selected wheat genotype for salt tolerance through plant breeding programs. The results of qualitative PCR Reaction- cDNA and Quantitative Real-Time PCR showed that the gene band appeared only in the selected genotypes with length 189bp, while this band absent in salt sensitive cultivar (Iraq) under salinity and non-salinity condition. Amount and expression of TaNIP gene to be enhanced under salinity condition only in the selected salt tolerant genotype, and they increased with increasing salt level. Great expression and amount of TaNIP gene was at high salinity level (20 ds/m). The selected salt tolerant genotype had proximately similar amount and expression of TaNIP gene under all salinity condition, while there had no amounts and expression of this gene in sensitive cultivar (Iraq) therefore according to this gene (TaNIP) there is improvement realized in these selected genotypes for salt tolerance through plant breeding programs.
Abstract: High soil salinity is a major abiotic stress in plant production worldwide. TaNIP gene was identified and cloned through the gene chip expression analysis of a salt- tolerant wheat mutant RH8706-49 under salt stress. Quantitative reverse transcription – PCR (Q-RT-PCR) was used to detect TaNIP salt tolerant gene and its expression in some selected w...
Show More
Effect of Water Salinity on Some Blood Parameters of Common Carp (Cyprinus carpio)
Hasan A. Al Hilali,
Mohammed S. Al-Khshali
Issue:
Volume 2, Issue 1, January 2016
Pages:
17-20
Received:
14 January 2016
Accepted:
16 February 2016
Published:
26 February 2016
Abstract: This study was conducted to investigate the effect of high salinity on the blood parameters of common carp (Cyprinus carpio) which gradually exposed to salt concentrations of 5, 10 and 15g/liter, as well as tap water (control 0.1g/liter). 80 fish were randomly distributed to four salinity treatments with 2 replicates /treatment (10 fish / replicate) at average weight of 15 ± 3 g to study the effect of salinity on the blood parameters, which included packed cells volume(PCV), red blood cells (RBC), white blood cells (RBC) and hemoglobin (Hb). Results showed an increase in the (PCV) to 36.17, 40.15 to and 45.30% when the salinity increased to 5, 10 and 15g/l respectively, compared with the control treatment (33.14%). Hb reached 13.34, 14.56 and 15.80 mg/100 ml at the concentration of 5, 10 and 15 respectively, compared with the control treatment (12.15 mg/100ml). RBC reached 2.80, 2.93 and 3.1 × 106 cells/mm3 respectively, in comparison with control (0.1 g/l), while the WBC increased to 12.88, 15.23 and 10.55 × 103 cells/mm3 when the salt concentrations were 5, 10 and 15g/l respectively, compared with control (10.44 × 103 cells/mm3).
Abstract: This study was conducted to investigate the effect of high salinity on the blood parameters of common carp (Cyprinus carpio) which gradually exposed to salt concentrations of 5, 10 and 15g/liter, as well as tap water (control 0.1g/liter). 80 fish were randomly distributed to four salinity treatments with 2 replicates /treatment (10 fish / replicate...
Show More