Prediction of Earthquakes; Considering the Ratio of P-to-S Wave Velocities
Issue:
Volume 9, Issue 6, December 2020
Pages:
227-231
Received:
27 November 2020
Accepted:
9 December 2020
Published:
16 December 2020
Abstract: The ratio of P-to-S-wave velocities (Vp/Vs) is considered as one of the important measures of stressed natural rocks. The changes of this ratio were observed in various earthquakes, however the time of occurrence of the earthquakes were not determined, since the predictions were not combined with other prediction methods. This discriminant provides information about formation and evolution of composition for the earth’s crust. In addition, the changes in Vp/Vs before and after earthquakes are the possibly reliable direction to realizing the mechanics and probably predicting earthquakes. However, due to lattice orientations of anisotropic minerals, most of earth’s rocks are anisotropic and there exist cracks and thin layerings. The changing patterns in Vp/Vs acquired from seismic propagations can be readily analyzed according to the ray path and the polarization of the (P) pressure and (S) shear waves. The variations in their ratios carry information about stress variations of THE crust of the earth. The arising stresses in rocks are the messengers of possible earthquakes. The stations with monitoring devices and Geographical Positioning System (GPS) upgraded WI-FI remote data acquisition system can serve monitoring stress and movements in the earth’s crust. In view present technological developments, the system is reasonable cost effective and prediction of earthquakes can be possible in narrowed time interval. The laboratory tests will be also part of the prediction process.
Abstract: The ratio of P-to-S-wave velocities (Vp/Vs) is considered as one of the important measures of stressed natural rocks. The changes of this ratio were observed in various earthquakes, however the time of occurrence of the earthquakes were not determined, since the predictions were not combined with other prediction methods. This discriminant provides...
Show More
Analysis of the Contribution of Water Vapor from the Arabian Sea to the Local Rainstorm Process in Southern Xinjiang
Hua Gao,
Dongling Bao,
Mamatabdulla Emer,
Shuiyong Fan,
Zuofang Zheng
Issue:
Volume 9, Issue 6, December 2020
Pages:
232-237
Received:
6 December 2020
Accepted:
17 December 2020
Published:
28 December 2020
Abstract: In order to investigate the water vapor sources of summer precipitation in southern Xinjiang, especially Hotan area. Based on NCEP FNL 1°*1° analysis data and Xinjiang meteorological bureau area numerical operation prediction, a local precipitation event in southern Xinjiang on June 26 was analyzed, and the results showed that the water vapor involved in this process originated from the northwestern Gangetic Plain and was transported along the Indus River plain and over the northwestern end of the mountains. Driven by the Iranian low-pressure trough, water vapor at 500 hPa was transported across the northwestern end of the Gangdise Mountains, past Georgoli Peak, and northwest over the Kunlun Mountains to arrive in southern Xinjiang. And a zonal profile was made along the northern foothills of the Kunlun Mountains (latitude 36°N), and the width was limited to the longitude range [70°E, 80°E] and the height range [500 hPa, 300 hPa] according to the water vapor channel scope of the process. In the first 24 hours after the end of the precipitation process, the total water vapor input and transmission amount was more than 3*107kg. That is, the water vapor transmitted over the preceding 24 hours far exceeded the precipitation during the precipitation event. So, under the combined influence of the Iranian vortex and equatorial vortex, moisture from the Arabian Sea at heights above 500 hPa can directly cross the Indus River plain traverse the Qinghai-Tibet Plateau and reach the southern region of Xinjiang. Therefore, the southern upper air passage is an important water vapor source in southern Xinjiang. Under appropriate conditions, it can cause short-term local heavy rainfall and lead to secondary meteorological disasters such as debris flow.
Abstract: In order to investigate the water vapor sources of summer precipitation in southern Xinjiang, especially Hotan area. Based on NCEP FNL 1°*1° analysis data and Xinjiang meteorological bureau area numerical operation prediction, a local precipitation event in southern Xinjiang on June 26 was analyzed, and the results showed that the water vapor invol...
Show More