-
Somatic Embryogenesis and Plant Regeneration from Zygotic Embryo in Carica papaya L., cv. Red-Lady
Md. Humayun Kabir,
Md. Ziaur Rahman,
Ahmad Nazri Karim Mamun
Issue:
Volume 4, Issue 6, November 2016
Pages:
45-50
Received:
23 August 2016
Accepted:
8 September 2016
Published:
18 October 2016
Abstract: Somatic embryogenesis creates a number of opportunities to facilitate large-scale propagation, synthetic seed production, genetic improvement through somaclonal variation, in vitro mutagenesis, protoplast fusion and genetic transformation. Induction of somatic embryogenesis from the vegetative parts of papaya plant was met with low success rates and a slow process of regeneration. Success depends on the choice of explants, the species being used and on various methods of embryogenesis will study. The most suitable explant for somatic embryogenesis is a large portion of either meristematic tissue or cell that retain an ability to express totipotency. Various investigations were made on somatic embryo induction of Carica spp. such as ovules of immature fruits, zygotic embryos from immature fruits, axillary buds, peduncles of immature fruits etc. In this study, somatic embryo induction from zygotic embryo of an immature fruit was examined. Various concentrations of 2,4-D and two levels of sucrose concentrations with or without addition of glutamine were assessed to determine the best response for induction of somatic embryogenesis from immature zygotic embryo of immature fruits in papaya cv. Red-lady (Carica papaya L.). The results showed that MS medium supplemented with 5.0 mg/l 2,4-D + 400 mg/l glutamine + 60 g/l sucrose promoted the formation of highest (70%) percentage of somatic embryo and also the average maximum number (35.80±4.40) of somatic embryo per explant. The highest (44%) percentage of somatic embryo germination into complete plantlets were obtained on MS medium devoid of plant growth regulators. The embryo developed only shoots of 22% and only roots of 10% instead of complete plantlet formation in this medium of MS0. The average highest (4.25 ± 0.32 cm) shoot length per germinated somatic embryo derived complete plantlets were also achieved on MS0 medium. The maximum (90%) percentage of root induction and average highest (7.50 ± 0.75) number of root per somatic embryo derived shoot and also the average maximum (5.20 ± 0.40 cm) root length were obtained on MS medium without plant growth regulators. The survival rate of somatic embryo derived plantlets in the field was about 10% to 50% depending on management practices.
Abstract: Somatic embryogenesis creates a number of opportunities to facilitate large-scale propagation, synthetic seed production, genetic improvement through somaclonal variation, in vitro mutagenesis, protoplast fusion and genetic transformation. Induction of somatic embryogenesis from the vegetative parts of papaya plant was met with low success rates an...
Show More
-
Path Coefficient Analysis and Correlation Coefficients Effects of Different Characters on Yield of Brassica rapa L.
Shahidul Islam,
Md. Maksudul Haque,
Shahidur Rashid Bhuiyan,
Sarowar Hossain
Issue:
Volume 4, Issue 6, November 2016
Pages:
51-55
Received:
18 September 2016
Accepted:
26 September 2016
Published:
27 October 2016
Abstract: A study was conducted by using twenty one (21) F9 populations derived from inter-varietal crosses of Brassica rapa L. Path co-efficient analysis revealed that plant height, number of primary branches per plant, number of siliqua per plant, seeds per siliqua, and siliqua length had the positive direct effect on yield per plant and days to 50% flowering, number of secondary branches per plant, and thousand seed weight had the negative direct effect on yield per plant. Correlation studyrevealed that yield per plant had significant positive association with plant height, number of primary branches per plant, number of siliqua per plant, seeds per siliqua, and siliqua length (genotypic or phenotypic level). Based on the variability study, some F9 plants showed high heritability for short duration and yield contributing characters were selected from some of the crosses combinations of the intervarital crosses of Brassica rapafor further selection.
Abstract: A study was conducted by using twenty one (21) F9 populations derived from inter-varietal crosses of Brassica rapa L. Path co-efficient analysis revealed that plant height, number of primary branches per plant, number of siliqua per plant, seeds per siliqua, and siliqua length had the positive direct effect on yield per plant and days to 50% flower...
Show More
-
Modelling of Infection Mildew of Taro (Phytophthora colocasiae)
Djouokep Léonel Gautier,
Asseng Charles Carnot,
Bowong Tsakou Samuel,
Ambang Zachée,
Monkam Tchamaha Fabrice
Issue:
Volume 4, Issue 6, November 2016
Pages:
56-70
Received:
21 September 2016
Accepted:
7 October 2016
Published:
31 October 2016
Abstract: Mildew taro caused by Phytophthora colocasiae affection is the most devastating of taro cultivation in Cameroon since 2010. It has been studied in leading the influence that can have a parameter considered favourable in the kinetics of the disease, and secondly, the interaction between plots through zoospores that can move from one field to another while estimating their dispersal throughout the plant. These models have allowed us to demonstrate that the duration of pathogen latency period, the number of sporangia produced on the surface of a lesion as well as the severity of the infection taken individually, are parameters to be taken into account in the development of a variety resistant to late blight taro. The dynamics of the fungus over time is represented by a matrix. The latter was used to establish a detailed estimate of the number of new infections caused by a sporangium placed in a landscape of healthy leaves. This number is known as the net rate of breeding base name (R0). The incidence and severity of disease are significantly reduced when the rate is less than or equal to one. So our approach can be used to guide research programs or evaluate the effectiveness of control strategies to design throughout the plant.
Abstract: Mildew taro caused by Phytophthora colocasiae affection is the most devastating of taro cultivation in Cameroon since 2010. It has been studied in leading the influence that can have a parameter considered favourable in the kinetics of the disease, and secondly, the interaction between plots through zoospores that can move from one field to another...
Show More
-
Effect of Nitrogen Source and Concentration on Growth and Activity of Nitrogen Assimilation Enzymes in Roots of a Moroccan Sorghum Ecotype
Reda Ben Mrid,
Redouane El Omari,
Mohamed Nhiri
Issue:
Volume 4, Issue 6, November 2016
Pages:
71-77
Received:
23 September 2016
Accepted:
8 October 2016
Published:
31 October 2016
Abstract: Carbon and nitrogen metabolism pathways are regulated by complex mechanisms in order to optimize growth and development of plants. This study was conducted to contribute to the determination of roles of some key enzymes of carbon and nitrogen metabolism in sorghum roots. Sorghum were grown under nitrate (NO3-), ammonium (NH 4+) or nitrate combined to ammonium at different concentrations. Growth parameters and protein content were evaluated. In addition, we analyzed key enzymes activities involved in nitrogen and carbon metabolism such as: nitrate reductase (NR), glutamine synthetase (GS), aspartate aminotransferase (AAT) and phosphoenolpyruvate carboxylase (PEPC). At high nitrogen levels (ammonium or nitrate), the sorghum roots showed an increase in biomass accompanied by an increase in protein content. Likewise, high concentrations induced accumulation of the non-photosynthetic isoform of phosphoenolpyruvate carboxylase. Glutamine synthetase and aspartate aminotransferase activities were also increased, especially at high levels of ammonium. These results showed that sorghum plants have an efficient system for nitrogen assimilation in their roots, allowing this plant to tolerate excessive concentration of this nutrient.
Abstract: Carbon and nitrogen metabolism pathways are regulated by complex mechanisms in order to optimize growth and development of plants. This study was conducted to contribute to the determination of roles of some key enzymes of carbon and nitrogen metabolism in sorghum roots. Sorghum were grown under nitrate (NO3-), ammonium (NH 4+) or nitrate combined ...
Show More
-
The mtlD Gene-overexpressed Transgenic Wheat Tolerates Salt Stress Through Accumulation of Mannitol and Sugars
Mohamed Ahmed Seif El-Yazal,
Hala Fawzi Eissa,
Safia Mahmoud Abd El-Mageed Ahmed,
Saad Mohamed Howladar,
Safi-naz Sabet Zaki,
Mostafa Mohamed Rady
Issue:
Volume 4, Issue 6, November 2016
Pages:
78-90
Received:
17 September 2016
Accepted:
12 October 2016
Published:
31 October 2016
Abstract: The mtlD gene-contained transgenic wheat has established the role of mannitol and sugars accumulation in alleviating the abiotic stresses, including salinity. This study was conducted to determine whether the 85 mM NaCl-salinity could be tolerated by wheat (genotype 235/3) plants of which seeds were transformed with mtlD gene (from Escherichia coli). The effects of mtlD gene transformation into wheat seeds on growth traits, physio-biochemical attributes, and yield and its quality of transgenic wheat genotype were investigated compared to non-transgenic wheat genotype under 85 mM NaCl-salinity. Results showed that mtlD gene-contained transgenic plants had improved salt tolerance over non-transgenics, showing by better growth traits (i.e., number of leaves and leaf area per plant, root system size and plant dry weights), physio-biochemical attributes (i.e., levels of leaf chlorophylls, shoot free proline, total soluble sugars, soluble sugar fractions and mannitol, activities of enzymatic and non-enzymatic antioxidants, and contents of nutrient elements), yield (i.e., number of spikes and grain weight per plant, and 1000-grain weight) and yield quality (i.e., grain contents of starch, protein and soluble sugars). The mtlD gene transformation into wheat seeds appears to a better strategy to increase salt tolerance of plants through increased performance of mannitol and sugar accumulation, showing more of their salt stress-protecting role. The best performing mtlD transgenics could be incorporated in a breeding program to accumulate transgenes for stress tolerance in elite wheat genotypes in a step to commercialize these transgenics with the proper level of salt tolerance.
Abstract: The mtlD gene-contained transgenic wheat has established the role of mannitol and sugars accumulation in alleviating the abiotic stresses, including salinity. This study was conducted to determine whether the 85 mM NaCl-salinity could be tolerated by wheat (genotype 235/3) plants of which seeds were transformed with mtlD gene (from Escherichia coli...
Show More
-
Hydrogen Peroxide Improves the Antioxidant Defence System in Salt Stressed- Allium cepa Plants
Taia Ali Abd El-Mageed,
Wael Morad Semida,
Saad Mohamed Howladar,
Safi-naz Sabet Zaki,
Mostafa Mohamed Rady
Issue:
Volume 4, Issue 6, November 2016
Pages:
91-100
Received:
18 September 2016
Accepted:
12 October 2016
Published:
31 October 2016
Abstract: As one of the active oxygen species that is widely generated in many biological systems and mediates various physiological and biochemical processes in plants, exogenous hydrogen peroxide (H2O2) in very low concentrations improves salt-tolerance in some plant species. Therefore, two field experiments were conducted in 2013/14 and 2014/15 to study the effect of foliar sprays at concentrations of 1 and 2 mM H2O2 on growth, yield, plant water relations, osmoprotectants and the activity of antioxidant system in two onion varieties grown under saline soil condition (ECe = 7.94 - 8.81 dS/m). Exogenous H2O2 enhanced salt stress tolerance in onion plants by reducing the endogenous H2O2 and lipid peroxidation, and increasing enzymatic (i.e., superoxide dismutase, catalase, ascorbate peroxidase, and glutathione reductase) and non-enzymatic antioxidant (i.e., ascorbic acid and glutathione) activity. Moreover, H2O2 application significantly affected photosynthetic efficiency and plant water status as evaluated by relative water content and membrane stability index. These results were positively reflected by the increase in plant growth, productivity and water use efficiency under salt stress conditions. H2O2 may participate in enzymatic and non-enzymatic antioxidant activity, inducing salt-tolerance in onion plants.
Abstract: As one of the active oxygen species that is widely generated in many biological systems and mediates various physiological and biochemical processes in plants, exogenous hydrogen peroxide (H2O2) in very low concentrations improves salt-tolerance in some plant species. Therefore, two field experiments were conducted in 2013/14 and 2014/15 to study t...
Show More
-
Evaluation of Inbred Lines of Baby Corn Through Line × Tester Method
Shahnewaz Begum,
Mohammad Amiruzzaman,
Mohammad Quamrul Islam Matin,
Sumaiya Haque Omy,
Md. Motiar Rohman
Issue:
Volume 4, Issue 6, November 2016
Pages:
101-107
Received:
26 September 2016
Accepted:
10 October 2016
Published:
3 November 2016
Abstract: Eight S3 baby corn lines of KH101 were evaluated following line (8) × tester (3) method by determining general combining ability (GCA) and specific combining ability (SCA). Highly significant genotypic differences were observed indicated wide range of variability present among the genotypes. Variance due to SCA was larger than GCA variance for all the characters indicating the preponderance of non-additive gene action in the expression of various traits. Among the parents none were found as good general combiners for baby corn yield. None of 24 cross combinations showed significant SCA effects for yield per plant. Considering cob length, cob diameter, cob per plant, total fodder weight and yield per plant the crosses KH-101/S3-44×VS/S3-24 and KH-101/S3-44×VS/S3-25 were selected as promising baby corn hybrids.
Abstract: Eight S3 baby corn lines of KH101 were evaluated following line (8) × tester (3) method by determining general combining ability (GCA) and specific combining ability (SCA). Highly significant genotypic differences were observed indicated wide range of variability present among the genotypes. Variance due to SCA was larger than GCA variance for all ...
Show More
-
Occurrence and Distribution of Begomoviruses Infecting Cassava in Western Kenya
Mariam Nyongesa Were,
Benard Mukoye,
Aggrey Keya Osogo,
Bonphace Collins Mangeni,
Paul Ateng’a Nyamwamu,
Vitalis Kalor Ogemah,
John Vincent Muoma,
Stephan Winter,
Hassan Karakacha Were
Issue:
Volume 4, Issue 6, November 2016
Pages:
108-113
Received:
29 September 2016
Accepted:
11 October 2016
Published:
7 November 2016
Abstract: Cassava (Manihot esculenta Cranz) is an important food staple in Busia, Homabay, Siaya, Migori, Kwale, Kilifi and Marakwet Counties and is a secondary food crop for many Kenyans. The current yields of 3-4 tons/ha obtained in Western Kenya are far below world averages and this is largely attributed to pests and diseases. The usual practice of retaining some seed cuttings from the current ware crop or buying them from neighbours, leads to accumulation of viral diseases most important of which are caused by begomovirus infections. A survey for cassava mosaic disease (CMD) was carried out in main cassava growing areas of Western Kenya with a view to determine incidence and distribution of the causal viruses. A total of 33 cassava farms in seven sub-counties in Western Kenya were covered. Leaf samples were collected and analysed serologically and by molecular means. Cassava plants in most farms were severely affected by cassava mosaic disease. Disease incidence in farms ranged between 2% to 54%. Three cassava infecting begomoviruses, African Cassava Mosaic Virus (ACMV), East African Cassava Mosaic Virus (EACMV) and East African Cassava Mosaic Virus – Ugandan variant (EACMV-Ug) were found in the collected samples, with EACMV-Ug being most prevalent followed by EACMV. These are interesting findings given that in the past surveys, ACMV was the most abundant virus in the area. To increase cassava yields, it is recommended that cassava farmers be educated on cassava diseases and their control.
Abstract: Cassava (Manihot esculenta Cranz) is an important food staple in Busia, Homabay, Siaya, Migori, Kwale, Kilifi and Marakwet Counties and is a secondary food crop for many Kenyans. The current yields of 3-4 tons/ha obtained in Western Kenya are far below world averages and this is largely attributed to pests and diseases. The usual practice of retain...
Show More
-
Allelopathic Effects of Aqueous Rhizome Extract of Kaempferia galanga on the Growth of Red Chilli (Capsicum annuum)
Martha Lulus Lande,
Zulkifli,
Nindya Putri Arifiani,
Mohammad Kanedi
Issue:
Volume 4, Issue 6, November 2016
Pages:
114-118
Received:
18 October 2016
Accepted:
28 October 2016
Published:
9 November 2016
Abstract: Kaempferia galanga L showed an allelopathic clues when intercropping planted with coconut plants, however aspects related to allelochemicals of this plant and their inhibitory or stimulatory properties against other crop plants has not been investigated in earnest. This research was conducted in order to determine whether the crude extracts of kacholam have allelopathic properties, either negative or positive, against red chilies. By using completely randomized design, 25 chilli plantss were grouped into five consist of 5 plants each. Each plant was grown individually in a poly bag containing mixture of soil and compost in a ratio of 2:1. Group 1 is the chillies given 0% (v/v) kacholam extract as the control. Group 2, 3, 4 and 5 are the plants treated with kacholam rhizome extract at a concentration of 25%, 50%, 75% and 100% respectively. After being treated for one week the chillies are harvested and all the study parameters namely plant height, dry weight, and concentration of chlorophyll were assessed. The results showed, plant height of red chillies significantly suppressed by kacholam rhizome extract with a concentration of 50% or higher. The dry weight of red chillies was significantly decreased by treatment of kacholam rhizome extract in all level of concentration. However, crude water extract of kacholam plant rhizome showed no significant effects on the concentration of chlorophyll a as well as chlorophyll b. In conclusion, the crude extract kacholam plant rhizomes contains suppressive allelochemicals and, thus Kaempferia galanga is potential to be used as a negative, instead of positive, allelopathic crops.
Abstract: Kaempferia galanga L showed an allelopathic clues when intercropping planted with coconut plants, however aspects related to allelochemicals of this plant and their inhibitory or stimulatory properties against other crop plants has not been investigated in earnest. This research was conducted in order to determine whether the crude extracts of kach...
Show More