-
The Effect of Polyethylene Glycol (PEG) on the Performance of Natural Zeolite-PVA Hybrid Ceramic Membrane for Desalination
Anwar Ma’ruf,
Moechammad Agus Salim Al Fathoni,
Agus Mulyadi Purnawanto,
Linatul Chulqi
Issue:
Volume 8, Issue 1, January 2020
Pages:
1-4
Received:
30 January 2020
Accepted:
17 February 2020
Published:
25 February 2020
Abstract: The seawater desalination process currently uses membrane technology because of relatively lower investment and energy requirements. The process of seawater desalination using membrane process technology can be done in 3 methods, namely reverse osmosis (RO), distillation membrane (membrane distillation / MD) and pervaporation process (PV). This study will examine the performance of a hybrid membrane developed from natural zeolite-TiO2 with polyvinyl alcohol (PVA) in addition to polyethylene glycol (PEG) for desalination of seawater. The addition of PEG to the PVA polymer solution (dope) will increase the membrane resistance (Rm) and seawater rejection. The higher rejection is achieved of 93.77% at the addition of 6% PEG. Fouling resistance (Rf) isn’t affected by PEG concentration. The fouling resistance has good linearity and stability at the addition of 6% PEG.
Abstract: The seawater desalination process currently uses membrane technology because of relatively lower investment and energy requirements. The process of seawater desalination using membrane process technology can be done in 3 methods, namely reverse osmosis (RO), distillation membrane (membrane distillation / MD) and pervaporation process (PV). This stu...
Show More
-
Reducing HCl Release to the Environment by Eliminating Methyl Chloride at Reactors End of Run
Rahul Patil,
Kevin Rickert
Issue:
Volume 8, Issue 1, January 2020
Pages:
5-10
Received:
6 June 2019
Accepted:
10 February 2020
Published:
28 February 2020
Abstract: Study of unreacted MeCl clearing from CSTR reactors at the end of run: It is a unique set up with CSTR reactors in cascade, used to produce salt-based product, esters and methanol from this unit operations. This study involves chemical reaction Engineering and process improvement experiments along with control logics to perform the steps to eliminating MeCl to the environment either in vapor or liquid form. pH and agitation speed are critical criterion to determine the presence of MeCl in the final drained liquid after the end of run. Process trends have been depicted in the study to verify the authenticity of the steps followed. Practical methods have been run through the lab analysis as well as studies done through the real unit operations environment. Reaction calculation was also part of methods used to conclude some portion of the study. Most literatures were referred through MeCl thermal and physical property data through published safety data sheets and pending patents on scrubbing methods of MeCl. Data was also collected through lab analysis on GC spectrometry with both gas and liquid methods, collected reading from unit operations at different ranges of pressure profile. This discussion would involve the use of water and caustic wash to react most of the MeCl out. The point in question is to minimize or eliminate of HCl emissions generated through unreacted MeCl when reactors are at the end of run and eventually getting washed off. Study concludes by giving quantity of MeCl (eventually HCl) sent to flare or thermal oxidizer to eventually burn-out. Recommendations were made with respect to number of cycles of wash to minimize the inert levels, thermal efficiency improvement to crack down the MeCl down that will be burned as well as changes in handling the unit operations. Conclusions are based on flash calculations, chemical reaction between Caustic, Water and MeCl + heat through steam jackets with combinations of pressure and temperature changes. Results published with the successful run of the process that is being recommended through the study.
Abstract: Study of unreacted MeCl clearing from CSTR reactors at the end of run: It is a unique set up with CSTR reactors in cascade, used to produce salt-based product, esters and methanol from this unit operations. This study involves chemical reaction Engineering and process improvement experiments along with control logics to perform the steps to elimina...
Show More
-
Adsorption of Heavy Metals Contaminants in Used Lubricating Oil Using Palm Kernel and Coconut Shells Activated Carbons
Boadu Kwasi Opoku,
Joel Ogbonna Friday,
Essumang David Kofi,
Evbuomwan Benson Osa
Issue:
Volume 8, Issue 1, January 2020
Pages:
11-18
Received:
8 November 2019
Accepted:
4 December 2019
Published:
10 March 2020
Abstract: This research work investigated the adsorption of some heavy metals contaminants in used lubricating oil using chemically activated carbon adsorbents produced from palm kernel and coconut shells. The adsorption mechanism was able to remove some heavy metals such as zinc, chromium, cadmium and magnesium contaminants from the used lubricating oil to appreciable levels. For instance, zinc from initial concentrations of 16.475±0.950 ppm before to 10.375±0.171 ppm after filtration processes for used lubricating oil sample A. Also, for coconut shell from an initial concentration of 14.575±0.272 ppm to 5.450±0.3000 ppm after filtration processes. It was observed that the coconut shell activated carbons was effective in the removal of lead metals while palm kernel cannot. However, the activated carbons produced from palm kernel and coconut shells are not suitable for the removal of both copper and iron metals. For example, after the filtration process with the palm kernel shell activated carbon, the mean concentration of copper metal increases for virgin (C) 0.001± 0.000 to 0.075±0.013 ppm and used lubricating oil samples (A&B) from 0.150±0.008 to 0.400±0.018 ppm and from 0.220±0.096 to 0.230±0.008 ppm respectively. Also, in the case of the coconut shell activated carbon, the mean concentration of copper in virgin lubricating oil remains the same 0.001±0.000 whereas for used lubricating oils samples (i.e. A&B) it increases from 0.150±0.008 to 0.780±0.014 and from 0.220±0.096 to 0.790±0.026 respectively. Also, the equilibrium adsorption data were analysed using the Langmuir isotherm model. The fit of this isotherm model to the equilibrium adsorption data was determined, using the linear coefficient of correlation (R2). The following R2 values were obtained; Copper (0.8185), Cadmium (0.8347), Lead (0.9349), Chromium (0.9378), Iron (0.9927), Zinc (0.9953), and Magnesium (0.9997) respectively. From the results obtained and statistics point of view, it can be concluded that the Langmuir model shows a better fit due to the high coefficient of correlation (R2 ≈ 1). The recovered oil could be also re-used.
Abstract: This research work investigated the adsorption of some heavy metals contaminants in used lubricating oil using chemically activated carbon adsorbents produced from palm kernel and coconut shells. The adsorption mechanism was able to remove some heavy metals such as zinc, chromium, cadmium and magnesium contaminants from the used lubricating oil to ...
Show More
-
A Simple Zeolite-based Treatment of Soya Bean Oil Mill Wastewater for Irrigation Purposes
Rose Erdoo Kukwa,
Benjamin Ishwah,
Ahola David Oklo,
Donald Tyoker Kukwa,
Fredrick Teghtegh Samoh,
Aondoakaa Steve Nomor
Issue:
Volume 8, Issue 1, January 2020
Pages:
19-26
Received:
25 January 2020
Accepted:
19 February 2020
Published:
10 March 2020
Abstract: Soya bean oil mill wastewater (SOMW) is a liquid waste obtained from the soya bean oil industry with several environmental problems due to its high amount of toxic pollutants. This research work is aimed at assessing the feasibility and suitability of using a zeolite-based method for the treatment of soya bean oil mill wastewater for irrigation purposes. In this study, successive columns containing different types of solid-state materials were used to investigate the treatment efficiency of SOMW using physicochemical parameters; pH was determined using a pH meter, Turbidity determined using Turbidity meter. The concentration of Na+, Ca2+, Mg2+, K+ were determined using Flame photometer and the concentration of NO3-, SO42-, PO43- were determined using Oxygen Analyzer. Zeolite was characterized using Advanced Powdered X-ray diffractometer, energy dispersive spectrometer and Fourier Transformed Infrared and the fine sand characterized using an integrated X-ray Analyzer. The treatment columns were packed with fine sand, zeolite and zeolite/fine sand composite. The treatment decreased the concentrations of Na+, Ca2+, Mg2+, K+, NO3-, SO42-, PO43- and pH by mean percentages of 80.5, 29.6, 81.0, 2.1, 66.5, 41.4, 47.4 and 42.3%, respectively. The turbidity of the soya bean oil mill wastewater decreased by 72.5%. Most contaminants were removed in the soya bean oil wastewater in the zeolite/sand composite column. This decrease in the concentration of the pollutants could be attributed to the high sorption and ion exchange capacity of the solid-state materials used. This simple zeolite-based method is promising technology for the treatment of industrial wastewaters from oil processing industries for irrigational purposes.
Abstract: Soya bean oil mill wastewater (SOMW) is a liquid waste obtained from the soya bean oil industry with several environmental problems due to its high amount of toxic pollutants. This research work is aimed at assessing the feasibility and suitability of using a zeolite-based method for the treatment of soya bean oil mill wastewater for irrigation pur...
Show More
-
Study on the Performance of a Swirl Tube Column
M. Jiang,
H. Yuan,
S. Fu,
Q. Shi
Issue:
Volume 8, Issue 1, January 2020
Pages:
27-35
Received:
14 March 2020
Accepted:
26 March 2020
Published:
13 April 2020
Abstract: A column is an important heat and mass transfer equipment, which can be used for distillation, absorption, gas stripping, extraction and other transfer separation process. The commonly used columns include plate columns and packed columns, which are operated under the gravity and have the problems of flooding, furrow flow or bias flow. In this paper, a new column, the swirl tube column, is presented. The swirl tube column is firstly combined super-gravity field (centrifugal force field) with column equipment to enhance mass transfer and absorption process. Through the full-field simulation of a two-stage swirl tube column and experiment, the fluid mechanics performance such as the velocity field and pressure field, pressure drop and flooding critical condition in the swirl tube column, as well as the influence of flowrate and gas-liquid ratio on the absorption performance are studied. Results show that the swirl tube in the column can generate swirling flow, and the flooding problem can be effectively avoided by properly controlling the ratio of liquid to gas, and the absorbing efficiency of the one-staged swirl tube column can reach more than 61%. It is an innovation structural optimization of traditional column equipment. Which has high research and industrial production value.
Abstract: A column is an important heat and mass transfer equipment, which can be used for distillation, absorption, gas stripping, extraction and other transfer separation process. The commonly used columns include plate columns and packed columns, which are operated under the gravity and have the problems of flooding, furrow flow or bias flow. In this pape...
Show More