Characterization of Physical, Spectroscopic and Thermal Properties of Biofield Treated Biphenyl
Mahendra Kumar Trivedi,
Rama Mohan Tallapragada,
Alice Branton,
Dahryn Trivedi,
Gopal Nayak,
Rakesh Kumar Mishra,
Snehasis Jana
Issue:
Volume 3, Issue 5, September 2015
Pages:
58-65
Received:
1 October 2015
Accepted:
13 October 2015
Published:
17 November 2015
Abstract: Biphenyl is used as an intermediate for synthesis of various pharmaceutical compounds. The objective of present research was to investigate the influence of biofield treatment on physical, spectroscopic and thermal properties of biphenyl. The study was performed in two groups (control and treated). The control group remained as untreated, and biofield treatment was given to treated group. The control and treated biphenyl were characterized by X-ray diffraction (XRD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), Fourier transform infrared (FT-IR) spectroscopy, Ultraviolet-visible (UV-Vis) spectroscopy and surface area analysis. The treated biphenyl showed decrease in intensity of XRD peaks as compared to control. Additionally, crystallite size was decreased in treated biphenyl by 16.82% with respect to control. The treated biphenyl (72.66ºC) showed increase in melting temperature as compared to control biphenyl (70.52ºC). However, the latent heat of fusion (∆H) of treated biphenyl was substantially changed by 18.75% as compared to control. Additionally, the treated biphenyl (155.14ºC) showed alteration in maximum thermal decomposition temperature (Tmax) as compared to control sample (160.97ºC). This showed the alteration in thermal stability of treated biphenyl as compared to control. Spectroscopic analysis (FT-IR and UV-visible) showed no alteration in chemical nature of treated biphenyl with respect to control. Surface area analysis through Brunauer-Emmett-Teller analysis (BET) analyzer showed significant alteration in surface area as compared to control. Overall, the result demonstrated that biofield has substantially affected the physical and thermal nature of biphenyl.
Abstract: Biphenyl is used as an intermediate for synthesis of various pharmaceutical compounds. The objective of present research was to investigate the influence of biofield treatment on physical, spectroscopic and thermal properties of biphenyl. The study was performed in two groups (control and treated). The control group remained as untreated, and biofi...
Show More
Characterization of Physical, Thermal and Spectral Properties of Biofield Treated 2,6-Dichlorophenol
Mahendra Kumar Trivedi,
Rama Mohan Tallapragada,
Alice Branton,
Dahryn Trivedi,
Gopal Nayak,
Rakesh Kumar Mishra,
Snehasis Jana
Issue:
Volume 3, Issue 5, September 2015
Pages:
66-73
Received:
7 October 2015
Accepted:
19 October 2015
Published:
17 November 2015
Abstract: 2,6-Dichlorophenol (2,6-DCP) is a compound used for the synthesis of chemicals and pharmaceutical agents. The present work is intended to evaluate the impact of Mr. Trivedi’s biofield energy treatment on physical, thermal and spectral properties of the 2,6-DCP. The control and treated 2,6-DCP were characterized by various analytical techniques such as X-ray diffraction (XRD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), Fourier transform infrared (FT-IR) spectroscopy, and ultra violet-visible spectroscopy (UV-vis) analysis. The XRD results showed the increase in crystallite size of treated sample by 28.94% as compared to the control sample. However, the intensity of the XRD peaks of treated 2,6-DCP were diminished as compared to the control sample. The DTA analysis showed a slight increase in melting temperature of the treated sample. Although, the latent heat of fusion of the treated 2,6-DCP was changed substantially by 28% with respect to the control sample. The maximum thermal decomposition temperature (Tmax) of the treated 2,6-DCP was decreased slightly in comparison with the control. The FT-IR analysis showed a shift in C=C stretching peak from 1464→1473 cm-1 in the treated sample as compared to the control sample. However, the UV-vis analysis showed no changes in absorption peaks of treated 2,6-DCP with respect to the control sample. Overall, the result showed a significant effect of biofield energy treatment on the physical, thermal and spectral properties of 2,6-DCP. It is assumed that increase in crystallite size and melting temperature of the biofield energy treated 2,6-DCP could alleviate its reaction rate that might be a good prospect for the synthesis of pharmaceutical compounds.
Abstract: 2,6-Dichlorophenol (2,6-DCP) is a compound used for the synthesis of chemicals and pharmaceutical agents. The present work is intended to evaluate the impact of Mr. Trivedi’s biofield energy treatment on physical, thermal and spectral properties of the 2,6-DCP. The control and treated 2,6-DCP were characterized by various analytical techniques such...
Show More