Effects of Area Closure on Selected Soil Physico-Chemical Properties in Hidabu Abote District, North Shewa Zone, Oromia
Endale Bedada,
Feto Esimo,
Alemayehu Muluneh
Issue:
Volume 5, Issue 1, March 2020
Pages:
1-9
Received:
23 March 2020
Accepted:
9 April 2020
Published:
29 April 2020
Abstract: This study was conducted at sire moresse area closure, Hidabu abote district, North shewa zone, Oromia Regional State to evaluate the effects of area closure on selected physic-chemical properties of soils. In this study area closure sites were compared with adjacent open grazing land in similar landscape positions for soil fertility buildup. Soil samples were collected from the experimental fields using Randomized Complete Block Design (RCBD) with factorial arrangement to evaluate selected soil physico- chemical properties. Data analyses were carried out using analysis of variance appropriate to general linear model (GLM). A total of 36 undisturbed and 36 disturbed soil samples were collected from both closed and open grazing land at 10 and 20 cm sampling depths along each slope position with three replication. The result of the study indicated that the mean value of most of soil physical and chemical properties were higher at area closure than adjacent open grazing land and also higher at bottom slope position than middle and upper slope position. The mean of Air filled porosity and Bulk density were lower at both area closure management practices and bottom slope position. Bulk density, Total Porosity, volumetric soil moisture content and saturated hydraulic conductivity at 20 cm sampling depth were shows significantly different with respect to management practices. Similarly, soil chemical properties such as EC, OC, AvP and CEC were shows significantly different with respect to management practices. Soil structure quality, Texture, BD, TP, SMC, EC and TN were shows significantly different under the three slope position. The overall output from the research showed that physical and chemical properties of soil in area closure areas are improving. Area closures act as important sinks of water and reduce soil erosion. From this study it was possible to conclude that area closure improves soil physical and chemical properties.
Abstract: This study was conducted at sire moresse area closure, Hidabu abote district, North shewa zone, Oromia Regional State to evaluate the effects of area closure on selected physic-chemical properties of soils. In this study area closure sites were compared with adjacent open grazing land in similar landscape positions for soil fertility buildup. Soil ...
Show More
The Application of Fiber Ion Exchange Sorbents for Wastewater Treatment and Purification of Gas Mixtures
Ilnur Garipov,
Renat Khaydarov,
Olga Gapurova,
Rashid Khaydarov,
Svetlana Evgrafova
Issue:
Volume 5, Issue 1, March 2020
Pages:
10-13
Received:
7 May 2020
Accepted:
26 May 2020
Published:
15 June 2020
Abstract: We developed a method of modifying the polyester material to produce ion exchange fiber sorbents. The production of cation exchange sorbents involved the treatment of polyester fibers with a 20–25% solution of NH2NH2H2O at 70–90°C and a 5% solution of NaOH at 40°C. Anion exchange sorbents were prepared by the treatment of cation exchange sorbents with a 1–5% solution of polyethylenimine at ambient temperature. These new types of sorbents can be used to remove radionuclides, heavy metal ions and organic contaminants from wastewater and drinking water. We studied main properties of these sorbents and their ability to remove 57Co, 60Co, 65Zn, 89Sr, 90Sr, 134Cs, 137Cs and other radionuclides, heavy metal ions (Zn, Ni, Cu, Sb, Pb, Cd, Cr, U, etc.), organic molecules M (pesticides, phenols, dioxins, benzene, toluene, etc.), radio-labeled organic molecules M-32P, M-131I, M-99Mo+99mTc, M-14C, etc. The static exchange capacity is 1–2 meq/g for cationic sorbents and 0.5–1 meq/g for anionic sorbents. The developed sorbents have been effective in removing low concentrations of contaminants from water (lower than 100–200 mg/L) as well as in purifying the gas mixtures from toxic and aggressive gases: SO2, SO3, NH3, H2S, etc.
Abstract: We developed a method of modifying the polyester material to produce ion exchange fiber sorbents. The production of cation exchange sorbents involved the treatment of polyester fibers with a 20–25% solution of NH2NH2H2O at 70–90°C and a 5% solution of NaOH at 40°C. Anion exchange sorbents were prepared by the treatment of cation exchange sorbents w...
Show More