Nanotechnology Phenomena in the Light of the Solar Energy
Djamel Ghernaout,
Abdulaziz Alghamdi,
Mabrouk Touahmia,
Mohamed Aichouni,
Noureddine Ait Messaoudene
Issue:
Volume 3, Issue 1, March 2018
Pages:
1-8
Received:
6 February 2018
Accepted:
24 February 2018
Published:
21 March 2018
Abstract: Nowadays, nanotechnology is one of the most conducting research-based areas because it merges understanding from many disciplines such as Physics, Chemistry, Biology, Medicine, Engineering, and Environmental Sciences among others. There are no limits to the potential applications of nanotechnology. It is helping to considerably improve, even revolutionize, many technology and industry sectors. New nano- and bio-materials, and nano-devices, are produced and monitored through nanotechnology instruments and manners, which explore and transform the features, responses, and functions of living and non-living matter, at sizes below 100 nm. This review focuses on nanotechnology, its definition and applications, and sunlight as a driving tool for developing nanotechnology. Sunlight as a free source of energy and clean agent for several physical and chemical reactions constitutes an increasing interest for both science and technology. Nanotechnology should focus on more using sunlight as a free energy source and an environmentally-friendly agent for its advancing for the human kind best future.
Abstract: Nowadays, nanotechnology is one of the most conducting research-based areas because it merges understanding from many disciplines such as Physics, Chemistry, Biology, Medicine, Engineering, and Environmental Sciences among others. There are no limits to the potential applications of nanotechnology. It is helping to considerably improve, even revolu...
Show More
Accumulation and Translocation of Heavy Metals in Eggplant (Solanum melongena L.) Grown in a Contaminated Soil
Mohamed Ahmed Youssef,
Asem Mohamed Abd El-Gawad
Issue:
Volume 3, Issue 1, March 2018
Pages:
9-18
Received:
18 October 2017
Accepted:
26 January 2018
Published:
1 May 2018
Abstract: A pot experiment was conducted to investigate the effects of the rock phosphate application on accumulation and translocation of heavy metals from the soil to the roots, shoots and fruits of eggplant (Solanum melongena L.) grown in a sewage sludge amended soil contaminated with Cd, Pb and Ni were 30, 30 and 60 mgkg-1, respectively. The obtained results demonstrated that the sewage sludge application caused a significance accumulation of metals in the fruits of eggplant. The concentrations of these metals in the fruits were in the order of: Pb > Cd > Ni. The fruits of eggplant were not safe for the human consumption, because the levels of heavy metals exceeded the permissible limits. These, heavy metals in different parts of eggplant can be ranked in the order of: roots > shoots > fruits, were (mgkg-1). The soil-plant transfer factor (TF) showed that the order of uptake of metals by eggplant was: Cd > Ni > Pb. This calls for concern especially in the case of Pb and Cd which are highly toxic and of no known biological use. Therefore, Eggplant should not be cultivated in the farms and fields which use sewage sludge contaminated with heavy metals as an amendment.
Abstract: A pot experiment was conducted to investigate the effects of the rock phosphate application on accumulation and translocation of heavy metals from the soil to the roots, shoots and fruits of eggplant (Solanum melongena L.) grown in a sewage sludge amended soil contaminated with Cd, Pb and Ni were 30, 30 and 60 mgkg-1, respectively. The obtained res...
Show More