Modelling and Solution of Infectious Diseases Using the Extended Laplace Adomian Decomposition Techniques
Bazuaye Frank Etin-Osa,
Ezeora Jeremiah
Issue:
Volume 10, Issue 2, April 2021
Pages:
30-39
Received:
14 December 2020
Accepted:
21 January 2021
Published:
16 April 2021
Abstract: The use of Mathematical models to describe the transmission of infectious diseases has attracted a lot of interest over the years and serious worldwide effort is accelerating the developments in the establishment of a global efforts for combating pandemics of infectious diseases. Scientists from different fields have teamed up for rapid assessment of potentially immediate situations. Toward this aim, mathematical modeling plays an important role in efforts that focus on predicting, assessing, and controlling potential outbreaks. The recent outbreak of covid 19 pandemic had increased the curiosity for the formulation of Mathematical models to describe and analyze the propagation of the disease. This paper focuses on the modeling and analysis of an infectious diseases model using the extended Laplace Adomian Decomposition (LAD) method. The method is used to obtain solutions in the form of infinite series. The result of the research with the aid of MAPLE indicates that physical contact with an infected person is the major cause of the propagation of any infectious disease in the absence of pharmaceutical and non pharmaceutical safety protocols such as the proper use of face mask, physical and social distancing. It becomes vital to subject the infected persons in isolation and adhere to the necessary protocols by relevance agencies and this will significantly flattened the curve of the spread of the infectious disease.
Abstract: The use of Mathematical models to describe the transmission of infectious diseases has attracted a lot of interest over the years and serious worldwide effort is accelerating the developments in the establishment of a global efforts for combating pandemics of infectious diseases. Scientists from different fields have teamed up for rapid assessment ...
Show More
Dimension Fractal in Radiological Imagery for Comparison of Data Between Morphologic and Pathological Elements
Ernesto Borges Batista,
Luis Alberto Escalona Fernandez,
Kirelis Napoles Dominguez,
Yamila Ochoa Sarmiento,
Claudia del Carmen Pupo Marrero
Issue:
Volume 10, Issue 2, April 2021
Pages:
40-45
Received:
11 December 2020
Accepted:
7 January 2021
Published:
16 June 2021
Abstract: Aims: Fractal for comparison of radiological imagery between morphologic and pathological elements confirms the behavior of the experimental information through dimension itself. The irregularity of the human body is its own characteristic. However, it has traditionally been measured with Euclidean metrics, by approximating its shapes to regular lines, areas and volumes. In response to this impossibility of making reliable measurements of this class of objects, fractal geometry is developed, which allows to adequately characterize the irregular shape of the human body. Method: they use the theoretic methods: Analysis synthesis, induction deduction and abstraction concretion. Processes of understanding, explanation and interpretation. Methods, procedures and mathematical algorithms, as well as information-technology professional programs are applicable. Come true quest of information about the application of dimension fractal in the diagnostic one belonging to diseases, based in radiological imagery. The diagnostic method fractal consists in the calculation of dimension for three cellular objects defined as: the nucleus, the cytoplasm without a nucleus and the entire cell. Results: Methods and procedures to ratify diseases, where the different authors yield a mathematical model, propose which themselves fractal for the comparison of histological and pathological elements confirms the behavior of the experimental data represented in radiological imagery, by means of dimension. About fractal geometry, the fractal dimension is obtained, which is a numerical measure that represents the degree of irregularity of an object. However, it has traditionally been measured with Euclidean metrics, by approximating its shapes to regular lines, areas and volumes. In response to this impossibility of making reliable measurements of this class of objects, fractal geometry is developed, which allows to adequately characterize the irregular shape of the human body. Conclusions: A methodology of work based in radiological imagery by comparison of histological and pathological elements to determine different diseases in patients becomes established.
Abstract: Aims: Fractal for comparison of radiological imagery between morphologic and pathological elements confirms the behavior of the experimental information through dimension itself. The irregularity of the human body is its own characteristic. However, it has traditionally been measured with Euclidean metrics, by approximating its shapes to regular li...
Show More