Abstract: The fundamental theorem of arithmetic says that every natural number greater than 1 is either a prime itself or can be factorized as a product of a unique multiset of primes. Every such integer can also be uniquely decomposed as a sum of powers of 2. In this note we point out that these facts can be combined to develop a binary number system which uniquely represents each integer as the product of a subset of a special set of prime powers which we refer to as P-primes.Abstract: The fundamental theorem of arithmetic says that every natural number greater than 1 is either a prime itself or can be factorized as a product of a unique multiset of primes. Every such integer can also be uniquely decomposed as a sum of powers of 2. In this note we point out that these facts can be combined to develop a binary number system which ...Show More