Regarding the Thermal Behaviour of a Centrifugal Pump for Oil Recovery
Adib Akhmetnabievich Gareev
Issue:
Volume 4, Issue 2, June 2019
Pages:
28-33
Received:
15 May 2019
Accepted:
9 August 2019
Published:
17 September 2019
Abstract: The modern world is characterized by increasing consumption of oil and its products. Oil production and consumption is an indicator of the economic level of development. However, there is a depletion of oil reserves in the field. New fields are not productive. Oil production in these fields leads to complications. Centrifugal pumps, which account for about 95% of the world's production, are particularly susceptible to such operational complications. Electric submersible pumps for oil well operation are the most flexible way, easily controlled and automated. Therefore, in low-productive fields, electric submersible pumps are widely used. However, in recent years, the operation of electric centrifugal pumps began to observe complications in the form of failures due to a decrease in the electrical resistance of the "cable – motor" system. Another complication in the operation of the electric centrifugal pump is a decrease in productivity. The third and most widespread complication is salt deposits in the inner cavity of the centrifugal pump. Studies conducted to identify the cause of salt deposition show that the original cause is the properties of reservoir water. However, it was not clear why salts were formed in some cases and not in others. Тhe state of Affairs remained unclear until the investigation of the thermal condition of the electric submersible pump began. It turned out that the centrifugal pump when pumping strongly carbonated liquids rapidly reduce the efficiency. It has been shown that the pump temperature is determined by the properties of the formation fluid and the properties of the centrifugal pump. Salt deposition begins when formation water inside the pump begins to boil. Analytical expressions were obtained to calculate the pump temperature. It turned out that the temperature of the pump also depends on the coefficient of heat transfer from the metal to the gas-liquid mixture and the coefficient of thermal conductivity of the gas layer on the surface of the pump. This work is devoted to obtaining an analytical expression for determining the heat return coefficient. The ability to calculate the pump temperature and determine the boiling pressure of reservoir water at this temperature will predict the deposition of salts in the centrifugal pump.
Abstract: The modern world is characterized by increasing consumption of oil and its products. Oil production and consumption is an indicator of the economic level of development. However, there is a depletion of oil reserves in the field. New fields are not productive. Oil production in these fields leads to complications. Centrifugal pumps, which account f...
Show More
Mechanical and Physical Properties of PP and HDPE
Ahmed Hassan Awad,
Ramadan El Gamasy,
Ayman Abd El Wahab,
Mohamed Hazem Abdellatif
Issue:
Volume 4, Issue 2, June 2019
Pages:
34-42
Received:
27 September 2019
Accepted:
21 October 2019
Published:
25 October 2019
Abstract: The properties of these polymers, as in the case of any materials, depending on the molecular weight of the polymer and the structure of the polymer chains. The main objective of this work is to study the mechanical and physical properties of pure PP and HDPE. To obtain a full characterization of pure polymer, samples were produced using a compression molding technique. Polymeric samples successfully filled the cavity of the die. The mechanical properties of PP and HDPE were determined using three-point bending, compression, hardness and impact test. While the physical properties were studied through density and water absorption. Also, the thermal analysis behavior was determined by thermogravimetric analysis, differential scanning calorimetry and thermomechnical analysis. Results showed the structure affects the properties. The PP showed better elastic modulus and strength due to the methyl attached to the carbon that prevents the chain rotation and hence makes the material stronger but inflexible. On the other hand, the absorbed energy of PP is less than that of HDPE. The thermogravimetric analysis results show a single weight-loss event with a degradation temperature of 310°C for HDPE and 255°C for PP. The differential scanning calorimetry shows that the crystallinity of PP (≅51) is less than that for HDPE (≅68) due to the difference in the specific heat. The coefficient of thermal expansion of HDPE is higher than that of PP due to the stronger interatomic forces.
Abstract: The properties of these polymers, as in the case of any materials, depending on the molecular weight of the polymer and the structure of the polymer chains. The main objective of this work is to study the mechanical and physical properties of pure PP and HDPE. To obtain a full characterization of pure polymer, samples were produced using a compress...
Show More