Abstract: This study analyzes the effect of slip parameter, microorganism concentration and bioconvection Péclet number on Magneto-hydrodynamics (MHD) bioconvection nanofluid flow over a stretching sheet. Similarity transformation is employed to convert the governing partial differential equations into coupled non-linear ordinary differential equations with appropriate boundary conditions. These equations are solved numerically using fourth order Runge Kutta-Fehlberg integration method along with a shooting technique. The dimensionless velocity, temperature, nanoparticle concentration and density of motile microorganisms were obtained together with the local skin friction, reduced Nusselt, Sherwood and motile microorganism density numbers. It was observed that nanoparticle concentration decreases with increase in the nanoparticle concentration slip but increases as magnetic field parameter increases. Also the velocity of the fluid decreases with increase in both velocity slip parameter ξ and magnetic field parameter M. It is also noticed that the temperature of the flow is continuously decreasing as the value of velocity slip parameter ξ, temperature slip parameter β and concentration slip parameter γ increase. Furthermore, as velocity and nanoparticle concentration slip parameters increase, the Nusselt number was observed to increase while the Sherwood number decreases. The skin friction coefficient also decreases as the values of velocity slip parameter increases. Finally we found that local microorganism transfer rate increases with greater values of bioconvection Lewis number Lb, microorganism concentration Ω and bioconvection Péclet number Pe. Comparisons between the previously published works and the present results reveal excellent agreement.Abstract: This study analyzes the effect of slip parameter, microorganism concentration and bioconvection Péclet number on Magneto-hydrodynamics (MHD) bioconvection nanofluid flow over a stretching sheet. Similarity transformation is employed to convert the governing partial differential equations into coupled non-linear ordinary differential equations with ...Show More