Assessment of the Consciousness Energy Healing Treated Withania Somnifera (Ashwagandha) Root Extract Using LC-MS, GC-MS, and NMR Spectroscopy
Mahendra Kumar Trivedi,
Alice Branton,
Dahryn Trivedi,
Gopal Nayak,
Barry Dean Wellborn,
Deborah Lea Smith,
Dezi Ann Koster,
Elizabeth Patric,
Jagdish Singh,
Kathleen Starr Vagt,
Krista Joanne Callas,
Kalyan Kumar Sethi,
Parthasarathi Panda,
Snehasis Jana
Issue:
Volume 6, Issue 2, April 2017
Pages:
20-30
Received:
13 March 2017
Accepted:
28 March 2017
Published:
13 April 2017
Abstract: Withania somnifera (Ashwagandha) root extract is an important herbal medicine. The current study was designed to investigate the impact of Consciousness Energy Healing Treatment (The Trivedi Effect®) on the characteristic properties of the phytoconstituents present in the ashwagandha root extract using LC-MS, GC-MS, and NMR spectroscopy. Ashwagandha root extract was divided into two parts – one part was control (without treatment), while another part was treated with the Consciousness Energy Healing Treatment remotely by seven renowned Biofield Energy Healers and defined as the Biofield Energy Treated sample. The LC-MS analysis revealed that the retention time (Rt) of the phytoconstituents remained same in both the control and treated samples, whereas the peak area% was significantly altered. The peak area% of the treated sample at Rt of 5.06, 5.24, 5.49, 5.68, 6.78, 6.87, 8.12, 8.22, 8.36, 8.55, 9.02, and 10.13 minutes were significantly increased in the range of 0.27% to 146.94% compared to the control sample. In addition, the peak area% of the treated sample at Rt of 5.29, 5.36, 6.40, 6.49, 6.56, 6.67, 7.08, 7.37, 7.76, 7.87, 8.02, 8.43, 8.85, 8.97, and 9.12 minutes were significantly decreased in the range of 1.83% to 23.53% compared with the control sample. A total of 18 withanolides such as sitoindoside IX, viscosa lactone B, 24, 25-dihydrowithanolide D, withanolide A, withanone, withaferin A, withanolide D, ixocarpalactone A, withanolide S, withanolide sulfoxide, etc. were proposed with their structure from the molecular mass at m/z 650, 489, 473, 471, 505, and 992 at retention times of 6.87, 7.10, 7.87, 8.22, 8.54, and 9.11 minutes with the help of GC-MS and NMR data of both the control and Biofield Energy Treated samples. The mass peak intensity values of the Biofield Energy Treated sample at the same retention time in was significantly decreased in the range of 3.99% to 52.28% compared with the control sample. These findings suggest that Energy of Consciousness Healing Treatment could be beneficial for altering the concentration of the phytoconstituents in the ashwagandha root extract by modifying their intrinsic physicochemical properties, which might be helpful to improve the bioavailability of active constituents of ashwagandha root extract that might provide better therapeutic response against inflammatory diseases, immunological disorders, arthritis, cancer, diabetes, sexual disorders, aging and other chronic infections.
Abstract: Withania somnifera (Ashwagandha) root extract is an important herbal medicine. The current study was designed to investigate the impact of Consciousness Energy Healing Treatment (The Trivedi Effect®) on the characteristic properties of the phytoconstituents present in the ashwagandha root extract using LC-MS, GC-MS, and NMR spectroscopy. Ashwagandh...
Show More
Manufacture and Mechanical Properties of PET-Based Composites Reinforced with Zinc Particles
Jessica Osorio-Ramos,
Elizabeth Refugio-García,
Mario Romero-Romo,
Eduardo Terrés-Rojas,
José Miranda-Hernández,
Enrique Rocha-Rangel
Issue:
Volume 6, Issue 2, April 2017
Pages:
31-36
Received:
14 March 2017
Accepted:
30 March 2017
Published:
19 April 2017
Abstract: This work analyzes the mechanical behavior of new composite materials with polymeric matrix, made from recycled polyethylene terephthalate (r-PET), reinforced with 10, 20, 30 and 40 wt% Zn metal particles, processed under isothermal sintering at constant temperature (256°C) and time (15 min) conditions. The r-PET/Zn composite material samples were obtained by a powder traditional technique, namely, ball-milling, uniaxial dye-pressing to obtain pre-forms followed by isothermal sintering. The observations through optical microscopy of the overall morphologies that resulted after sintering the samples studied, were compared against the r-PET-control sample without reinforcement, processed under the same conditions. From the results, it was found that the metal particles were distributed uniformly in the matrix; further, increasing amounts of metal particles tended to improve the mechanical behavior resulting in a stronger material, as was the case of the two materials with higher metal contents (30 and 40 wt% Zn).
Abstract: This work analyzes the mechanical behavior of new composite materials with polymeric matrix, made from recycled polyethylene terephthalate (r-PET), reinforced with 10, 20, 30 and 40 wt% Zn metal particles, processed under isothermal sintering at constant temperature (256°C) and time (15 min) conditions. The r-PET/Zn composite material samples were ...
Show More