Quinn’s Law of Fluid Dynamics: Supplement #3 A Unique Solution to the Navier-Stokes Equation for Fluid Flow in Closed Conduits
Issue:
Volume 6, Issue 2, December 2020
Pages:
30-50
Received:
22 July 2020
Accepted:
5 August 2020
Published:
25 August 2020
Abstract: The recent publication of Quinn’s Law of Fluid Dynamics brings into focus longstanding contradictions regarding permeability in closed conduits that have littered the fluid dynamics landscape for more than 150 years. In this paper, we will use this new level of understanding to explain these contradictions, in layman’s terms, and resolve them, by introducing for the first time, as far as we know, a unique solution to the Navier-Stokes equation for fluid flow in closed conduits, which is understandable by knowledgeable physicists, engineers, chromatographers and aerospace enthusiasts alike, but who may not necessarily be versed in the abstract jargon of a graduate in advanced mathematics. In addition, we will apply our unique solution to chosen illustrative worked examples, as well as those of third parties from the published literature. In so doing, we will demonstrate the utility of our solution, not only, to packed conduits containing particles having solid skeletons, but also, to empty conduits, which in the context of this new understanding of fluid dynamics in closed conduits, represents a special case of a packed conduit in which the particles are fully porous, i.e., they are made entirely of free space.
Abstract: The recent publication of Quinn’s Law of Fluid Dynamics brings into focus longstanding contradictions regarding permeability in closed conduits that have littered the fluid dynamics landscape for more than 150 years. In this paper, we will use this new level of understanding to explain these contradictions, in layman’s terms, and resolve them, by i...
Show More
Analysing the Effects of Non-newtonian Viscoelastic Fluid Flows on Stretching Surfaces with Suction
Golbert Aloliga,
Isaac Azuure
Issue:
Volume 6, Issue 2, December 2020
Pages:
51-61
Received:
14 December 2019
Accepted:
30 December 2019
Published:
27 August 2020
Abstract: The fourth order Runge-Kutta integration scheme coupled with numerical shooting algorithm is employed to examine heat and mass transfer in a steady two-dimensional Magnetohydrodynamic non-Newtonian fluid flow over a stretching vertical surface with suction by considering radiation, viscous dissipation, Soret and Dufour effects. A steady two-dimensional magneto hydrodynamic non-Newtonian fluid flow over a flat surface with suction has been studied. The boundary layer governing partial differential equations are derived by considering the Bossiness approximations. These equations are transformed to nonlinear ordinary differential equations by the techniques of similarity variables and are solved analytically in the presence of buoyancy forces. The effects of different parameters such as magnetic field parameter, Prandtl number, buoyancy parameter, Soret number, Dufour number, radiation parameter, Brinkmann number, suction parameter and Lewis number on velocity, temperature, and concentration profiles are presented graphically and in tables and discussed quantitatively. Results show that the effect of increasing Soret number or decreasing Dufour number tends to decrease the velocity and temperature profiles (increase in Soret cools the fluid and reduces the temperature) while enhancing the concentration. Among the many importance of the fluid in chemical engineering, metallurgy, polymer extrusion process will definitely require cooling the molten liquid to further cool the system, for the production of paper and glass. In this process, the rate of cooling and shrinking influences very much on the final quality of the product.
Abstract: The fourth order Runge-Kutta integration scheme coupled with numerical shooting algorithm is employed to examine heat and mass transfer in a steady two-dimensional Magnetohydrodynamic non-Newtonian fluid flow over a stretching vertical surface with suction by considering radiation, viscous dissipation, Soret and Dufour effects. A steady two-dimensi...
Show More