Abstract: Methylchlorosilane is an important chemical raw material. It has been matured since the direct synthesis technology has been applied for many years. However, due to the characteristics of gas-solid two-phase catalytic reaction, it still faces many problems in industrial production. The use of systems engineering methods to solve production problems has become an important task for organic chlorosilane monomer manufacturers. This paper introduces the application of mathematical modeling in the optimization of methylchlorosilane synthesis process parameters as an example to illustrate the important role of system engineering ideas in the production practice process, to achieve digitization of the fluidized bed reactor control process, parameter optimization. Through the research and analysis of the production control process, the mathematical model of superficial gas velocity and catalyst feed coefficient control was established to optimize the methylchlorosilane synthesis process. The results show that the apparent gas velocity should be controlled in stages during the direct synthesis of methylchlorosilane. The induction period is 0.10~0.12 m/s, and the stable period is 0.25~0.28 m/s. After the catalyst is added to the reactor, it will undergo three stages of induction period, stable period and aging period. After the catalyst reaction performance, the catalyst will gradually lose its catalytic ability due to various physical and chemical factors. Catalyst stability and life-span in industrial production are related to its own performance and mixing ratio, the ternary copper catalyst life-span is generally 50-60 hours, the suitable mixing ratio is 2.0-2.5%.Abstract: Methylchlorosilane is an important chemical raw material. It has been matured since the direct synthesis technology has been applied for many years. However, due to the characteristics of gas-solid two-phase catalytic reaction, it still faces many problems in industrial production. The use of systems engineering methods to solve production problems...Show More