Abstract: A well-known family of logics for managing structured knowledge is Description logics (DLs). They form the basis for a wide variety of ontology languages. Experience with the use of DLs in applications has, however, shown that their capabilities are insufficient for some domains. In particular, the decision-making process requires the assessment of two, possibly contradictory, influences on decision factors. First, there are items belonging to certain classes or fulfillling certain roles within complex logical constructs, but these memberships are to some extent vague. Secondly, individual preferences may change depending on the person who controls the decision-making process. Therefore, the challenge in building a decision making framework is to appropriately account for these variable influences by depicting and incorporating both aspects. This paper shows how these influences can be best modeled using a combination of fuzzy description logic and weighted description logic. Fuzzy logic is used to represent vagueness and ambiguity in ontologies, weighted description logic expresses individual preferences. In addition, the paper shows how to engineer an appropriate architecture for the suggested model.Abstract: A well-known family of logics for managing structured knowledge is Description logics (DLs). They form the basis for a wide variety of ontology languages. Experience with the use of DLs in applications has, however, shown that their capabilities are insufficient for some domains. In particular, the decision-making process requires the assessment of...Show More