A Portable Sensor for Skin Bioimpedance Measurements
Joshua Robert Harvey,
Yitzhak Mendelson
Issue:
Volume 7, Issue 1, March 2019
Pages:
1-8
Received:
1 July 2019
Accepted:
25 July 2019
Published:
10 August 2019
Abstract: The costs of pressure injury treatments continue to rise with a steadily aging population and consistent pressure injury incidence rates. Evidence suggests that the bioimpedance of living tissues changes in response to continuous pressure loading and may be useful as an indicator for the onset of pressure injuries. Therefore, the development of a low-cost, accurate, and portable sensor capable of measuring the bioimpedance of human skin has practical significance in the development of pressure injury prevention devices. This paper reports the design and characterization of a system for measuring skin impedance based on the AD5933 impedance analyzer. The sensor was tested for accuracy via measurements of a simplified electrical equivalent skin model. Long duration measurement stability was assessed over 24 hours and skin measurement repeatability was performed on the volar forearm. The power consumption was measured both during idle and when transmitting data for each major component. The sensor demonstrated accuracies similar to those reported for other AFE’s used in conjunction with the AD5933. Additionally, the sensor shows good stability over long measurement durations as well as good repeatability when measuring the skin bioimpedance on the volar forearm. Power consumption was as expected and future suggestions for lowering the overall circuit power consumption and size are presented.
Abstract: The costs of pressure injury treatments continue to rise with a steadily aging population and consistent pressure injury incidence rates. Evidence suggests that the bioimpedance of living tissues changes in response to continuous pressure loading and may be useful as an indicator for the onset of pressure injuries. Therefore, the development of a l...
Show More
Study of Wireless Sensor Network
Mohaiminul Islam,
Amit Kumar,
Anower Hossain
Issue:
Volume 7, Issue 1, March 2019
Pages:
9-15
Received:
27 July 2019
Accepted:
18 August 2019
Published:
26 August 2019
Abstract: A wireless sensor network is a group of specialized transducers with a communications infrastructure for monitoring and recording conditions at diverse locations. Commonly monitored parameters are temperature, humidity, pressure, wind direction and speed, illumination intensity, vibration intensity, sound intensity, power-line voltage, chemical concentrations, pollutant levels and vital body functions. A sensor network consists of multiple detection stations called sensor nodes, each of which is small, lightweight and portable. Every sensor node is equipped with a transducer, microcomputer, transceiver and power source. The transducer generates electrical signals based on sensed physical effects and phenomena. The microcomputer processes and stores the sensor output. The transceiver receives commands from a central computer and transmits data to that computer. The power for each sensor node is derived from a battery. Currently, WSN (Wireless Sensor Network) is the most standard services employed in commercial and industrial applications, because of its technical development in a processor, communication, and low-power usage of embedded computing devices. The WSN is built with nodes that are used to observe the surroundings like temperature, humidity, pressure, position, vibration, sound etc. These nodes can be used in various real-time applications to perform various tasks like smart detecting, a discovery of neighbor node, data processing and storage, data collection, target tracking, monitor and controlling, synchronization, node localization, and effective routing between the base station and nodes. This paper describes the concept of wireless sensor network.
Abstract: A wireless sensor network is a group of specialized transducers with a communications infrastructure for monitoring and recording conditions at diverse locations. Commonly monitored parameters are temperature, humidity, pressure, wind direction and speed, illumination intensity, vibration intensity, sound intensity, power-line voltage, chemical con...
Show More