Multiple Length and Time-scale Approaches in Materials Modeling
Issue:
Volume 6, Issue 1-1, January 2017
Pages:
1-9
Received:
4 August 2016
Accepted:
21 August 2016
Published:
3 September 2016
Abstract: Multiscale modeling has become an essential tool in understanding and designing materials and physical systems with characteristics at multiple length and time scales. Although modern computational techniques are able to track the material behaviors from the nano-scale atomic vibrations at femtoseconds to the macroscopic plastic deformations of metals at seconds, simulations of physical phenomena of engineering interest are often limited by overwhelming computation time. The objective of multiscale methods is to predict the important physical behaviors without resolving the full details of the system, through averaging/coarse-graining the structure in length and/or extracting the slow time-scale dynamics. This paper reviews the state-of-the-art multiscale methods with applications in material science and biological systems.
Abstract: Multiscale modeling has become an essential tool in understanding and designing materials and physical systems with characteristics at multiple length and time scales. Although modern computational techniques are able to track the material behaviors from the nano-scale atomic vibrations at femtoseconds to the macroscopic plastic deformations of met...
Show More
Contact around a Sharp Corner with Small Scale Plasticity
Issue:
Volume 6, Issue 1-1, January 2017
Pages:
10-17
Received:
31 October 2016
Accepted:
8 November 2016
Published:
8 December 2016
Abstract: Owing to elastic singularity, the contact stress around a sharp corner is highly sensitive to the boundary conditions and local geometrical details. Determination of such stress is critical in predicting failures such as wear, fretting fatigue and crack initiation. In this paper, the stress around such corner is analyzed based on linear elasticity and small scale plasticity. The stress on the contact interface is generalized in a way that the results can be easily converted to represent another corner with different dimensions or boundary conditions. An example is presented to show the determination of the stress scale and the formulation of a generalized solution. It is shown that the generalized macro stress field away from the corner dominates the contact behaviors around the corner.
Abstract: Owing to elastic singularity, the contact stress around a sharp corner is highly sensitive to the boundary conditions and local geometrical details. Determination of such stress is critical in predicting failures such as wear, fretting fatigue and crack initiation. In this paper, the stress around such corner is analyzed based on linear elasticity ...
Show More