| Peer-Reviewed

Quarkonium Masses in the N-dimensional Space Using the Analytical Exact Iteration Method

Received: 25 October 2016     Accepted: 7 November 2016     Published: 10 December 2016
Views:       Downloads:
Abstract

The N- dimensional radial Schrödinger equation with an extended Cornell potential is solved. The analytical exact iteration method (AEIM) is applied. The energy eigenvalues are calculated in the N –dimensional space. The charmonium meson, the bottomonium meson and the meson masses are calculated in the N-dimensional space. The special cases are obtained from the general case. The study of the effect of dimensionality number is studied. The mean value of the radius and the mean square velocity of charmonium meson, bottomonium meson, and meson are calculated. The present results are improved in comparison with other recent studies and are in good agreement with the experimental data. Therefore, the present method with the present potential gives successfully description of heavy quarkonium properties.

Published in International Journal of Theoretical and Applied Mathematics (Volume 2, Issue 2)
DOI 10.11648/j.ijtam.20160202.19
Page(s) 86-92
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2016. Published by Science Publishing Group

Keywords

Schrödinger Equation, Cornell Potential, Analytical Exact Iteration Method

References
[1] S. M. Kuchin and N. V. Maksimenko, Univ. J. Phys. Appl. 7, 295 (2013).
[2] R. Kumar and F. Chand, Common. Theor. Phys. 59, 528 (2013).
[3] T. Das, Electronic Journal of Theoretical Physics13, No. 35, 207 (2016).
[4] A. Al-Jamel and H. Widyan, Appl. Phys. Rese. 4, 94 (2013).
[5] A. N. Ikot, O. A. Awoga, and A. D. Antia, Chin. Phys. 22, 020304 (2013).
[6] S. M. Al-Jaber, Int. J. Theor. Phys. 37, (1998).
[7] S. M. Al-Jaber, Int. J. Theor. Phys. 47, 1853 (2008).
[8] G. Chen, Z. Naturforsch. 59, 875 (2004).
[9] K. J. Oyewumi, F. O. Akinpelu and A. D. Agboola, Int. J. Theor. Phys. 47, 1039 (2008).
[10] S. M. Ikhdair and R. Sever, to appear in the Int. J. Mod. Phys. E (preprint quantph/0611065).
[11] D. Agboola, Phys. Scr. 80, 065304 (2009).
[12] H. Hassanabadi, Y. B. Hoda and LU. Liang-Liang, Chin. Phys. Lett. 29, 020303 (2012).
[13] S. Ikhdair, R. Sever, Journal of Molecular Structure: THEOCHEM 855, 13 (2008).
[14] H. Hassanabadi, S. Zarrinkamar and A. A. Rajabi, Commun. Theor. Phys. 55, 541 (2011).
[15] G. R. Khan, Eur. Phys. J. D 53, 123 (2009).
[16] H. Hassanabadi, B. H. Yazarloo, S. Zarrinkamar and M. Solaimani, Int. J. of Quantum Chemistry 112, 3706 (2012).
[17] G. R. Boroun and H. Abdolmalki, Phys. Scr. 80, 065003 (2009).
[18] M. Abu-shady, Journal of the Egyptian Mathematical Society accepted 22 June (2016).
[19] S. M. Ikhdair, M. Hamzavi, Physica B 407, 4797 (2012).
[20] E. Z. Liverts, E. G. Drukarev, R. Krivec, V. B. Mandelzweig, Few Body Syst. 44,367 (2008).
[21] R. N. Choudhury, M. Mondal, Phys. Rep. A 52, 1850 (1995).
[22] R. De, R. Dutt, U. Sukhatme, J. Phys. A: Math.Gen. 25, L843 (1992).
[23] L. Gr. Ixaru, H. De. Meyer, G. V. Berghe, Phys. Rev. E 61, 3151 (2000).
[24] P. Sandin, M. Ögren, and M. Gulliksson, Phys. Rev. E 93, 033301 (2016)
[25] Z. Wang, Q. Chen, Comput. Phys. Commun.179, 49 (2005).
[26] Chaudhuri R N and Mondal M Phys. Rev. A 52, 1850 (1995).
[27] R. Kumar, F. Chand, Phys. Scr. 85, 055008 (2012).
[28] H. Rahimov, H. Nikoofard, S. Zarrinkamar and H. Hassanabadi, Appl. Math. and Comp. 219,4710 (2013).
[29] A. O. Barut, M. Berrondo, G. Garcia-Calderon, J. Math. Phys. 21, 1851(1980).
[30] S. ӧzcelik, M. Simsek, Phys. Lett. A 152, 145 (1991).
[31] M. Abu-Shady, Inter. J. of Appl. Math. and Theor. Phys. 2, 16 (2016).
[32] A. Kumar Ray and P. C. Vinodkumar, Pramana J. Phys. 66, 958 (2006).
[33] E. J. Eichten and C. Quigg, Phys. Rev. D 49, 5845 (1994).
[34] D. Ebert, R. N. Faustov, and V. O. Galkin, Phys. Rev. D 67, 014027 (2003).
[35] N. V. Masksimenko and S. M. Kuchin, Russ. Phy. J. 54, 57 (2011).
[36] P. Gupta and I. Mehrotra, Journal of Modern Physics, 3, 1530 (2012).
Cite This Article
  • APA Style

    E. M. Khokha, M. Abu-Shady, T. A. Abdel-Karim. (2016). Quarkonium Masses in the N-dimensional Space Using the Analytical Exact Iteration Method. International Journal of Theoretical and Applied Mathematics, 2(2), 86-92. https://doi.org/10.11648/j.ijtam.20160202.19

    Copy | Download

    ACS Style

    E. M. Khokha; M. Abu-Shady; T. A. Abdel-Karim. Quarkonium Masses in the N-dimensional Space Using the Analytical Exact Iteration Method. Int. J. Theor. Appl. Math. 2016, 2(2), 86-92. doi: 10.11648/j.ijtam.20160202.19

    Copy | Download

    AMA Style

    E. M. Khokha, M. Abu-Shady, T. A. Abdel-Karim. Quarkonium Masses in the N-dimensional Space Using the Analytical Exact Iteration Method. Int J Theor Appl Math. 2016;2(2):86-92. doi: 10.11648/j.ijtam.20160202.19

    Copy | Download

  • @article{10.11648/j.ijtam.20160202.19,
      author = {E. M. Khokha and M. Abu-Shady and T. A. Abdel-Karim},
      title = {Quarkonium Masses in the N-dimensional Space Using the Analytical Exact Iteration Method},
      journal = {International Journal of Theoretical and Applied Mathematics},
      volume = {2},
      number = {2},
      pages = {86-92},
      doi = {10.11648/j.ijtam.20160202.19},
      url = {https://doi.org/10.11648/j.ijtam.20160202.19},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ijtam.20160202.19},
      abstract = {The N- dimensional radial Schrödinger equation with an extended Cornell potential is solved. The analytical exact iteration method (AEIM) is applied. The energy eigenvalues are calculated in the N –dimensional space. The charmonium meson, the bottomonium meson and the  meson masses are calculated in the N-dimensional space. The special cases are obtained from the general case. The study of the effect of dimensionality number is studied. The mean value of the radius and the mean square velocity of charmonium meson, bottomonium meson, and  meson are calculated. The present results are improved in comparison with other recent studies and are in good agreement with the experimental data. Therefore, the present method with the present potential gives successfully description of heavy quarkonium properties.},
     year = {2016}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Quarkonium Masses in the N-dimensional Space Using the Analytical Exact Iteration Method
    AU  - E. M. Khokha
    AU  - M. Abu-Shady
    AU  - T. A. Abdel-Karim
    Y1  - 2016/12/10
    PY  - 2016
    N1  - https://doi.org/10.11648/j.ijtam.20160202.19
    DO  - 10.11648/j.ijtam.20160202.19
    T2  - International Journal of Theoretical and Applied Mathematics
    JF  - International Journal of Theoretical and Applied Mathematics
    JO  - International Journal of Theoretical and Applied Mathematics
    SP  - 86
    EP  - 92
    PB  - Science Publishing Group
    SN  - 2575-5080
    UR  - https://doi.org/10.11648/j.ijtam.20160202.19
    AB  - The N- dimensional radial Schrödinger equation with an extended Cornell potential is solved. The analytical exact iteration method (AEIM) is applied. The energy eigenvalues are calculated in the N –dimensional space. The charmonium meson, the bottomonium meson and the  meson masses are calculated in the N-dimensional space. The special cases are obtained from the general case. The study of the effect of dimensionality number is studied. The mean value of the radius and the mean square velocity of charmonium meson, bottomonium meson, and  meson are calculated. The present results are improved in comparison with other recent studies and are in good agreement with the experimental data. Therefore, the present method with the present potential gives successfully description of heavy quarkonium properties.
    VL  - 2
    IS  - 2
    ER  - 

    Copy | Download

Author Information
  • Department of Basic Science, Modern Academy for Engineering and Technology, Cairo, Egypt

  • Department of Applied Mathematics, Faculty of Science, Menoufia University, Shebin El- Kom, Egypt

  • Department of Applied Mathematics, Faculty of Science, Menoufia University, Shebin El- Kom, Egypt

  • Sections