American Ginseng (Panax quinquefolius, AG) is a standout amongst the most perceived herbal botanicals in Oriental Medicine and the alternative healthcare market. In spite of the fact that AG is not as broadly studied as Panax Ginseng, none the less, AG is one of the best-selling herbs in the world market, and has gathered expanding attention from researchers as of late. AG is grown in the United States of America, Canada, and The People's Republic of China, on subject of AG industry and quality standards Wisconsin Ginseng is considered to be the gold standard for the highest quality grown worldwide. AG has been farmed in Wisconsin, U.S., for more than 100 years, dating back to the 1800’s which birthed the artificially propagated industry. Today, Wisconsin Ginseng farmers account for 95 percent of the total cultivated AG production of the United States which continues to attract the studies of researcher professionals to the environmentally clean and regulated grown Wisconsin source of origin. Ongoing studies have demonstrated that through the numerous unregulated cultivated procedures that AG is grown, fungal molds, pesticides, and various metals and residues have contaminated the crops. Scientific investigations of AG in the past decade have increased drastically due to the increasing demand of herbal derived biomedicines from natural botanical plant sources that have demonstrated significant potential in clinical efficacy of important diseases. AG Past studies demonstrated have shown ginseng saponins called ginsenosides are the major active constituents in AG. The investigations of AG were relatively limited in the previous decade, but some encouraging advances have been accomplished in understanding the chemistry, pharmacology and structure-function relationship of AG and its clinical efficacy. In this manner, we review pharmacological effects of the ginsenosides, also the clinical efficacy on the cardiovascular system, immune system, and nervous system as well as metabolism and anti-cancer effects. Concentrating on the clinical evidence has indicated particular effectiveness in specific diseases, such as diabetes mellitus, arterial stiffness, neurocognitive disorders, and cancer fatigue as a recommended adjunct treatment along with supplementing conventional therapy.
Published in | International Journal of Chinese Medicine (Volume 3, Issue 4) |
DOI | 10.11648/j.ijcm.20190304.13 |
Page(s) | 64-79 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2019. Published by Science Publishing Group |
American Ginseng, Panax quinquefolius, Ginsenosides, Pharmacological Efficacy, Clinical Efficacy
[1] | International Affairs U.S. fish & Wildlife Service, www.fws.gov/international/plants/american-ginseng.html |
[2] | University of Wisconsin, http://corn.agronomy.wisc.edu/Crops/Ginseng.aspx |
[3] | Peake BM, Tong AY, Wells WJ, Harraway JA, Niven BE, Weege B, et al. “Determination of trace metal concentrations in ginseng (Panax Quinquefolius (American)) roots for forensic comparison using Inductively Coupled Plasma Mass-Spectrometry,” Forensic Sci Int. 2015 Jun; 251: 214-219. doi: 10.1016/j.forsciint.2015.03.011. Epub 2015 Mar 24. |
[4] | Kiangsu Institute of Modern Medicine. Encyclopedia of Chinese Drug. Shanghai: Shanghai Scientific Technical Publication; 1977. p 29–36, 850–851. [In Chinese] |
[5] | Zhang LX. “A preliminary study on the history of American Ginseng cultivation in the United States,” [J] Special Wild Economic Animal and Plant Research, 1987 (4): 23-25. [In Chinese] |
[6] | Stone JA.”The status of acupuncture and oriental medicine in the United States,” Chin J Integr Med. 2014 Apr; 20 (4): 243-249. doi: 10.1007/s11655-014-1776-0. Epub 2014 Apr 3. |
[7] | Harkey MR, Henderson GL, Gershwin ME, Stern JS, Hackman RM. Variability in commercial ginseng products: an analysis of 25 preparations. Am J Clin Nutr. 2001; 73: 1101–1106. |
[8] | Editor Board of Zhong Hua Ben Cao. The Chinese Herbal (Zhong Hua Ben Cao). Shanghai Science and Technology Press; Shanghai: 1999. |
[9] | Vuksan V, Sievenpiper JL, Koo VY, Francis T, Beljan-Zdravkovic U, Xu Z, et al. “American ginseng (Panax quinquefolius L) reduces postprandial glycemia in nondiabetic subjects and subjects with type 2 diabetes mellitus,” Arch Intern Med. 2000 Apr 10; 160 (7): 1009-1013. |
[10] | Röhrig B, du Prel JB, Wachtlin D, Blettner M. “Types of study in medical research: part 3 of a series on evaluation of scientific publications,” Dtsch Arztebl Int. 2009 Apr; 106 (15): 262–268. |
[11] | Hoffman D. Medical herbalism: the science and practice of herbal medicine. Rochester, VT: Healing Arts Press, 2003: 570–582. |
[12] | Attele AS, Wu JA, Yuan CS. “Ginseng pharmacology: multiple constituents and multiple actions,” Biochem Pharmacol. 1999; 58: 1685–1693. |
[13] | Yuan CS, Wang CZ, Wicks SM, Qi LW. ”Chemical and pharmacological studies of saponins with a focus on American ginseng,” J Ginseng Res. 2010 Sep 1; 34 (3): 160-7. |
[14] | Bensky, Dan (2004) Chinese Herbal Medicine Materia Medica. Eastland Press, third edition. |
[15] | II. Brekhman and IV. Dardymov, “New substances of plant origin which increase nonspecific resistance,” Annual Review of Pharmacology, vol. 9, pp. 419–430, 1969. |
[16] | Radad K, Gille G, Liu L, Rausch WD. “Use of ginseng in medicine with emphasis on neurodegenerative disorders,” J Pharmacol Sci. 2006; 100: 175–186. |
[17] | Mancuso C, Santangelo R. “Panax ginseng and Panax quinquefolius: From pharmacology to toxicology,” Food Chem Toxicol. 2017 Sep; 107 (Pt A): 362-372. doi: 10.1016/j.fct.2017.07.019. Epub 2017 Jul 8. |
[18] | Chen CF, Chiou WF, Zhang JT. "Comparison of the pharmacological effects of Panax ginseng and Panax quinquefolium," Acta Pharmacol Sin. 2008 Sep; 29 (9): 1103-8. doi: 10.1111/j.1745-7254.2008.00868.x. |
[19] | Wang Y, Choi HK, Brinckmann JA, Jiang X, Huang L. “Chemical analysis of Panax quinquefolius (North American ginseng): A review,” J Chromatogr A. 2015 Dec 24; 1426: 1-15. doi: 10.1016/j.chroma.2015.11.012. Epub 2015 Nov 14. |
[20] | Vuksan V, Xu ZZ, Jovanovski E, Jenkins AL, Beljan-Zdravkovic U, Sievenpiper JL, Mark Stavro P, Zurbau A, Duvnjak L, Li MZC."Efficacy and safety of American ginseng (Panax quinquefolius L.) extract on glycemic control and cardiovascular risk factors in individuals with type 2 diabetes: a double-blind, randomized, cross-over clinical trial," Eur J Nutr. 2018 Feb 24. doi: 10.1007/s00394-018-1642-0. |
[21] | Barton DL, Liu H, Dakhil SR, Linquist B, Sloan JA, Nichols CR, McGinn TW, Stella PJ, Seeger GR, Sood A, Loprinzi CL. "Wisconsin Ginseng (Panax quinquefolius) to Improve Cancer-Related Fatigue: A Randomized, Double-Blind Trial, N07C2," J Natl Cancer Inst. 2013 Aug 21; 105 (16): 1230-8. doi: 10.1093/jnci/djt181. Epub 2013 Jul 13. |
[22] | Scholey A, Ossoukhova A, Owen L, Ibarra A, Pipingas A, He K, Roller M, Stough C. "Effects of American ginseng (Panax quinquefolius) on neurocognitive function: an acute, randomised, double-blind, placebo-controlled, crossover study," Psychopharmacology (Berl). 2010 Oct; 212 (3): 345-56. doi: 10.1007/s00213-010-1964-y. Epub 2010 Jul 31. |
[23] | Dickman JR, Koenig RT, Ji LL. "American Ginseng Supplementation Induces an Oxidative Stress in Postmenopausal Women," J Am Coll Nutr. 2009 Apr; 28 (2): 219-28. |
[24] | Zhao HZ, editor. “Cyclopedia of Panax ginseng and American ginseng,” Hong Kong: Rong-Zhai Publishers; 1998. p 9. [In Chinese] |
[25] | Li FY, editor. Panax ginseng and American ginseng. Beijing: Chinese Agriculture Scientech Press; 2006. p. 587–91. [In Chinese] |
[26] | Tanaka O, Sakai R. “Saponins of Ginseng and related plants. In: Herz W, Grisebach H (Editors). Progress in chemistry of organic natural products,” Vienna: Spring-Verlag, 1984. p 1–76. |
[27] | Yang CR, Zhou J, Tanaka O. “Chemotaxanomic studies and the utilization of Panax species,” Acta Bot Yunnanica 1988 Suppl. 1: 47–62. [In Chinese] |
[28] | Li FY, editor. “Panax ginseng and American ginseng,” Beijing: Chinese Agriculture Scientech Press; 2006. p 486–7. [In Chinese] |
[29] | Kim, J. S., Kim, Y., Han, S. H., Jeon, J. Y., Hwang, M., Im, Y. J., Kim, J. H., Lee, S. Y., Chae, S. W., Kim, M. G., 2013a. “Development and validation of an LC-MS/MS method for determination of compound K in human plasma and clinical application,” J. Ginseng Res. 37, 135e141. |
[30] | Qu CL, Bai YP, Jin XQ, Wang YT, Zhang K, You JY, Zhang HQ. “Study on ginsenosides in different parts and ages of Panax quinquefolius L,” Food Chem. 2009; 115: 340–346. |
[31] | Reeds DN, Patterson BW, “Okunade A, et al. Ginseng and ginsenoside Re do not improve beta-cell function or insulin sensitivity in overweight and obese subjects with impaired glucose tolerance or diabetes,” Diabetes Care. 2011; 34: 1071–1076. |
[32] | Huang GD, Zhong XF, Deng ZY, Zeng R. “Proteomic analysis of ginsenoside Re attenuates hydrogen peroxide-induced oxidative stress in human umbilical vein endothelial cells,” Food Funct. 2016 May 18; 7 (5): 2451-61. doi: 10.1039/c6fo00123h. Epub 2016 May 10. |
[33] | Court WA, Reynolds LB, Hendel JG. “Influence of root age on the concentration of ginsenosides of American ginseng (Panax quinquefolium),” Can J Plant Sci 1996; 76: 853–5. |
[34] | Wills RBH, Du XW, “Stuart DI. Changes in ginsenosides in Australian-grown American ginseng plants (Panax quinquefolium L.),” Aust J Exp Agric 2002; 42: 1119–23. |
[35] | Li WK, Gu CG, Zhang HJ, Awang DVC, Fitzloff JF, Fong HHS, et al. “Use of high-performance liquid chromatography-tandem mass spectrometry to distinguish Panax ginseng L. A. Meyer (Asian ginseng) and Panax quinquefolium L. (North American ginseng),” Anal Chem 2000; 72: 5417–22. |
[36] | Sun K, Wang CS, Guo J, Horie Y, Fang SP, Wang F, et al. “Protective effects of ginsenoside Rb1, ginsenoside Rg1, and notoginsenoside R1 on lipopolysaccharide-induced microcirculatory disturbance in rat mesentery,” Life Sci 2007; 81: 509–18. |
[37] | Wu CF, Bi XL, Yang JY, Zhan JY, Dong YX, Wang JH, et al. “Differential effects of ginsenosides on NO and TNF-alpha production by LPS-activated N9 microglia,” Intern Immnuopharmacol 2007; 7: 312–20. |
[38] | Liu ZX, Liu XC. “Effect of ginsenoside Rb1 and Re on cardiomyocyte apoptosis after ischemia and reperfusion in rats,” Chin J Histochem Cytochem 2002; 11: 374–7. [In Chinese] |
[39] | Ro JY, Ahn YS, Kim KH. “Inhibitory effect of ginsenoside on the mediator release in the guinea pig lung mast cells activated by specific antigen-antibody reactions,” Int J Immunopharmacol 1998; 20: 625–41. |
[40] | Keum YS, Han SS, Chun KS, Park KK, Park JH, Lee SK et al. “Inhibitory effects of the ginsenoside Rg3 on phorbol ester-induced cyclooxygenase-2 expression, NF-kappaB activation and tumor promotion,” Mutat Res 2003; 523–524: 75–8. |
[41] | Park EK, Shin YW, Lee HU, Kim SS, Lee YC, Lee BY, et al. “Inhibitory effect of ginsenoside Rb1 and compound K on NO and prostaglandin E2 biosynthesis of RAW 264.7 cells induced by lipopolysaccharide,” Biol Pharm Bull 2005; 28: 652–6. |
[42] | Lee TK, Wang W, O'Brien KF, Johnke RM, Wang T, Allison RR, Diaz AL. “Effect of North American ginseng on 137Cs-induced micronuclei in human lymphocytes: a comparison with WR-1065,” Phytother Res. 2008 Dec; 22 (12): 1614-22. doi: 10.1002/ptr.2533. |
[43] | Miller SC, Ti L, Shan JJ. “The sustained influence of short term exposure to a proprietary extract of North American ginseng on the hemopoietic cells of the bone marrow, spleen and blood of adult and juvenile mice,” Phytother Res. 2012 May; 26 (5): 675-81. doi: 10.1002/ptr.3626. Epub 2011 Oct 13. |
[44] | Miller SC, Ti L, Shan J. “Dietary supplementation with an extract of North American ginseng in adult and juvenile mice increases natural killer cells,” Immunol Invest. 2012; 41 (2): 157-70. doi: 10.3109/08820139.2011.599087. Epub 2011 Aug 4. |
[45] | Yan J, Ma Y, Zhao F, Gu W, Jiao Y. ‘Identification of immunomodulatory signatures induced by american ginseng in murine immune cells,” Evid Based Complement Alternat Med. 2013; 2013: 972814. doi: 10.1155/2013/972814. Epub 2013 Nov 11. |
[46] | Samimi R, Xu WZ, Lui EM, Charpentier PA. “Isolation and immunosuppressive effects of 6″-O-acetylginsenoside Rb1 extracted from North American ginseng,” Planta Med. 2014 Apr; 80 (6): 509-16. doi: 10.1055/s-0034-1368319. Epub 2014 Mar 31. |
[47] | Azike CG, Charpentier PA, Lui EM. “Stimulation and suppression of innate immune function by American ginseng polysaccharides: biological relevance and identification of bioactives,” Pharm Res. 2015 Mar; 32 (3): 876-97. doi: 10.1007/s11095-014-1503-3. Epub 2014 Sep 11. |
[48] | Chen, J., Wang, Q., Wu, H., Liu, K., Wu, Y., Chang, Y., Wei, W., 2016a. “The ginsenoside metabolite compound K exerts its anti-inflammatory activity by down- regulating memory B cell in adjuvant-induced arthritis,” Pharm. Biol. 54, 1280e1288. |
[49] | Qi B, Wang S, Wang Q, Zhang H, Bai XY, He HN, Sun WJ, Liu L, Zhao DQ. “Characterization and immunostimulating effects on murine peritoneal macrophages of a novel protein isolated from Panax quinquefolius L,” J Ethnopharmacol. 2016 Dec 4; 193: 700-705. doi: 10.1016/j.jep.2016.10.034. Epub 2016 Oct 11. |
[50] | Christensen LP. “Ginsenosides chemistry, biosynthesis, analysis, and potential health effects,” Adv Food Nutr Res. 2009; 55: 1–99. [PubMed: 18772102] |
[51] | Nah SY, Kim DH, Rhim H. “Ginsenosides: are any of them candidates for drugs acting on the central nervous system?,” CNS Drug Rev 2007; 13: 381–404. [PubMed: 18078425] |
[52] | Quirke V, Gaudilliere J-P. “The Era of Biomedicine: Science, Medicine, and Public Health in Britain and France after the Second World War,” Journal ListMed Histv. 52 (4); 2008 OctPMC2570449 |
[53] | Chang Y, Huang WJ, Tien LT, Wang SJ. “Ginsenosides Rg1 and Rb1 enhance glutamate release through activation of protein kinase A in rat cerebrocortical nerve terminals (synaptosomes),” Eur J Pharmacol 2008; 578: 28–36. [PubMed: 17949708] |
[54] | Tian J, Fu F, Geng M, Jiang Y, Yang J, Jiang W, Wang C, Liu K. “Neuroprotective effect of 20(S)- ginsenoside Rg3 on cerebral ischemia in rats,” Neurosci Lett 2005; 374: 92–97. [PubMed: 15644271] |
[55] | Benishin CG, Lee R, Wang LC, Liu HJ. “Effects of ginsenoside Rb1 on central cholinergic metabolism,” Pharmacology 1991; 42: 223–229. [PubMed: 1852782] |
[56] | Lee JH, Jeong SM, Kim JH, Lee BH, Yoon IS, Choi SH, Lee SM, Park YS, Kim SS, Kim HC, Lee BY, Nah SY. “Effects of ginsenosides and their metabolites on voltage-dependent Ca(2+) channel subtypes,” Mol Cells 2006; 21: 52–62. [PubMed: 16511347] |
[57] | Mook-Jung I, Hong HS, Boo JH, Lee KH, Yun SH, Cheong MY, Joo I, Huh K, Jung MW. “Ginsenoside Rb1 and Rg1 improve spatial learning and increase hippocampal synaptophysin level in mice,” J Neurosci Res 2001; 63: 509–515. [PubMed: 11241586] |
[58] | Yuan QL, Yang CX, Xu P, Gao XQ, Deng L, Chen P, Sun ZL, Chen QY. “Neuroprotective effects of ginsenoside Rb1 on transient cerebral ischemia in rats,” Brain Res 2007; 1167: 1–12. [PubMed: 17663984] |
[59] | Chen X, Huang T, Zhang J, Song J, Chen L, Zhu Y. “Involvement of calpain and p25 of CDK5 pathway in ginsenoside Rb1’s attenuation of beta-amyloid peptide25-35-induced tau hyperphosphorylation in cortical neurons,” Brain Res 2008; 1200: 99–106. [PubMed: 18289510] |
[60] | Xue JF, Liu ZJ, Hu JF, Chen H, Zhang JT, Chen NH. “Ginsenoside Rb1 promotes neurotransmitter release by modulating phosphorylation of synapsins through a cAMP-dependent protein kinase pathway,” Brain Res 2006; 1106: 91–98. [PubMed: 16836988] |
[61] | Zhao H, Li Q, Pei X, Zhang Z, Yang R, Wang J, Li Y. “Long-term ginsenoside administration prevents memory impairment in aged C57BL/6J mice by up-regulating the synaptic plasticity-related proteins in hippocampus,” Behav Brain Res 2009; 201: 311–317. [PubMed: 19428650] |
[62] | Zhao H, Li Q, Zhang Z, Pei X, Wang J, Li Y. “Long-term ginsenoside consumption prevents memory loss in aged SAMP8 mice by decreasing oxidative stress and up-regulating the plasticity- related proteins in hippocampus,” Brain Res 2009; 1256: 111–122. [PubMed: 19133247] |
[63] | Rasheed, N., Tyagi, E., Ahmad, A., Siripurapu, K. B., Lahiri, S., Shukla, R., Palit, G., 2008. “Involvement of monoamines and proinflammatory cytokines in mediating the anti-stress effects of Panax quinquefolium,” J. Ethnopharmacol. 117, 257e262. |
[64] | Hu SQ, Yu HM, Liu TS, Yang DJ, Chen XZ, He CJ. “[Neuroprotective effects of water extracts of American Ginseng on SH-SY5Y cells apoptosis induced by Abeta25-35],” Zhong Yao Cai. 2008 Sep; 31 (9): 1373-7 |
[65] | Xu BB, Liu CQ, Gao X, Zhang WQ, Wang SW, Cao YL. “Possible mechanisms of the protection of ginsenoside Re against MPTP-induced apoptosis in substantia nigra neurons of Parkinson’s disease mouse model,” J Asian Nat Prod Res. 2005; 7: 215–224. [PubMed: 15621629] |
[66] | Xu L, Chen WF, Wong MS. “Ginsenoside Rg1 protects dopaminergic neurons in a rat model of Parkinson’s disease through the IGF-I receptor signalling pathway,” Br J Pharmacol. 2009; 158: 738–748. [PubMed: 19703168] |
[67] | Bao HY, Zhang J, Yeo SJ, Myung CS, Kim HM, Kim JM, Park JH, Cho J, Kang JS. “Memory enhancing and neuroprotective effects of selected ginsenosides,” Arch Pharm Res. 2005; 28: 335– 342. [PubMed: 15832823] |
[68] | Wang YZ, Chen J, Chu SF, Wang YS, Wang XY, Chen NH, Zhang JT. “Improvement of memory in mice and increase of hippocampal excitability in rats by ginsenoside Rg1’s metabolites ginsenoside Rh1 and protopanaxatriol,” J Pharmacol Sci. 2009b; 109: 504–510. [PubMed: 19372633] |
[69] | Zhang GZ, Liu AL, Zhou YB, San X, Jin TW, Jin Y. “Panax ginseng ginsenoside-Rg(2) protects memory impairment via anti-apoptosis in a rat model with vascular dementia,” J Ethnopharmacol. 2008; 115: 441–448. [PubMed: 18083315] |
[70] | Zhao WJ, Li PY. “Ginsenoside Re improved memory impairment in aged rats and mice,” Neurobiol Aging. 2004; 25: S582–S583. |
[71] | Bowie LE1, Roscoe WA, Lui EM, Smith R, Karlik SJ. “Effects of an aqueous extract of North American ginseng on MOG(35-55)-induced EAE in mice,” Can J Physiol Pharmacol. 2012 Jul; 90 (7): 933-9. doi: 10.1139/y2012-092. Epub 2012 Jun 21. |
[72] | Wang JY, Yang JY, Wang F, Fu SY, Hou Y, Jiang B, Ma J, Song C, Wu CF. “Neuroprotective effect of pseudoginsenoside-f11 on a rat model of Parkinson's disease induced by 6-hydroxydopamine,” Evid Based Complement Alternat Med. 2013; 2013: 152798. doi: 10.1155/2013/152798. Epub 2013 Dec 10. |
[73] | Rinwa P, Kumar A. “Modulation of nitrergic signalling pathway by American ginseng attenuates chronic unpredictable stress-induced cognitive impairment, neuroinflammation, and biochemical alterations,” Naunyn Schmiedebergs Arch Pharmacol. 2014 Feb; 387 (2): 129-41. doi: 10.1007/s00210-013-0925-5. Epub 2013 Oct 17. |
[74] | Shin, K., Guo, H., Cha, Y., Ban, Y. H., Seo da, W., Choi, Y., Kim, T. S., Lee, S. P., Kim, J. C., Choi, E. K., Yon, J. M., Kim, Y. B., 2016. “CereboostTM, an American ginseng extract, improves cognitive function via up-regulation of choline acetyltransferase expression and neuroprotection. Regul Toxicol Pharmacol. 78, 53e58. |
[75] | Dou HC, Chen JY, Ran TF, Jiang WM. “Panax quinquefolius saponin inhibits endoplasmic reticulum stress-mediated apoptosis and neurite injury and improves functional recovery in a rat spinal cord injury model,” Biomed Pharmacother. 2018 Jun; 102: 212-220. doi: 10.1016/j.biopha.2018.03.074. Epub 2018 Mar 22. |
[76] | Shao ZH, Xie JT, Vanden Hoek TL, Mehendale S, Aung H, Li CQ, Qin Y, Schumacker PT, Becker LB, Yuan CS. “Antioxidant effects of American ginseng berry extract in cardiomyocytes exposed to acute oxidant stress,” Biochim Biophys Acta 2004; 1670: 165–171. [PubMed: 14980443] |
[77] | Mehendale SR, Wang CZ, Shao ZH, Li CQ, Xie JT, Aung HH, Yuan CS. “Chronic pretreatment with American ginseng berry and its polyphenolic constituents attenuate oxidant stress in cardiomyocytes,” Eur J Pharmacol 2006; 553: 209–214. [PubMed: 17092497] |
[78] | Xie JT, Shao ZH, Vanden Hoek TL, Chang WT, Li J, Mehendale S, Wang CZ, Hsu CW, Becker LB, Yin JJ, Yuan CS. “Antioxidant effects of ginsenoside Re in cardiomyocytes,” Eur J Pharmacol 2006; 532: 201–207. [PubMed: 16497296] |
[79] | Wang CL, Shi DZ, Yin HJ. “Effect of panax quinquefolius saponin on angiogenesis and expressions of VEGF and bFGF in myocardium of rats with acute myocardial infarction,” Zhongguo Zhong Xi Yi Jie He Za Zhi 2007; 27: 331–334. [PubMed: 17526173] |
[80] | Prior RL, Cao G. “Analysis of botanicals and dietary supplements for antioxidant capacity: a review,” J AOAC Int 2000; 83: 950–956. [PubMed: 10995120] |
[81] | Wang CZ, Mehendale SR, Yuan CS. “Commonly used antioxidant botanicals: active constituents and their potential role in cardiovascular illness,” Am J Chin Med 2007; 35: 543–558. [PubMed: 17708622] |
[82] | Li JQ, Ichikawa T, Jin Y, Hofseth LJ, Nagarkatti P, Nagarkatti M, Windust A, Cui TX. “An essential role of Nrf2 in American ginseng-mediated anti-oxidative actions in cardiomyocytes,” J Ethnopharmacol. 2010b; 130: 222–230. [PubMed: 20447451] |
[83] | Wu, Y., Lu, X., Xiang, F. L., Lui, E. M., Feng, Q., 2011b. “North American ginseng protects the heart from ischemia and reperfusion injury via upregulation of endothelial nitric oxide synthase,” Pharmacol. Res. 64, 195e202. |
[84] | Tsutsumi, Y. M., Tsutsumi, R., Mawatari, K., Nakaya, Y., Kinoshita, M., Tanaka, K., Oshita, S., 2011. “Compound K, a metabolite of ginsenosides, induces cardiac protection mediated nitric oxide via Akt/PI3K pathway,” Life Sci. 88, 725e729. |
[85] | Wu Q, Wang W, Li S, Nagarkatti P, Nagarkatti M, Windust A, Wang XL, Tang D, Cui T. “American ginseng inhibits vascular smooth muscle cell proliferation via suppressing Jak/Stat pathway,” J Ethnopharmacol. 2012 Dec 18; 144 (3): 782-5. doi: 10.1016/j.jep.2012.09.046. Epub 2012 Oct 4. |
[86] | Jiang M, Murias JM, Chrones T, Sims SM, Lui E, Noble EG. “American ginseng acutely regulates contractile function of rat heart,” Front Pharmacol. 2014 Mar 14; 5: 43. doi: 10.3389/fphar.2014.00043. eCollection 2014. |
[87] | Qu C, Li B, Lai Y, Li H, Windust A, Hofseth LJ, Nagarkatti M, Nagarkatti P, Wang XL, Tang D, Janicki JS, Tian X, Cui T. “Identifying panaxynol, a natural activator of nuclear factor erythroid-2 related factor 2 (Nrf2) from American ginseng as a suppressor of inflamed macrophage-induced cardiomyocyte hypertrophy,” J Ethnopharmacol. 2015 Jun 20; 168: 326-36. doi: 10.1016/j.jep.2015.04.004. Epub 2015 Apr 14. |
[88] | Wu Y, Qin C, Lu X, Marchiori J, Feng Q. “North American ginseng inhibits myocardial NOX2-ERK1/2 signaling and tumor necrosis factor-α expression in endotoxemia,” Pharmacol Res. 2016 Sep; 111: 217-225. doi: 10.1016/j.phrs.2016.06.010. Epub 2016 Jun 16. |
[89] | Tang X, Gan XT, Rajapurohitam V, Huang CX, Xue J, Lui EM, Karmazyn M. “North American ginseng (Panax quinquefolius) suppresses β-adrenergic-dependent signalling, hypertrophy, and cardiac dysfunction,” Can J Physiol Pharmacol. 2016 Dec; 94 (12): 1325-1335. Epub 2016 Aug 17. |
[90] | Blumenthal M. The ABC clinical guide to herbs. New York, NY: Theime, 2003: 211–225. |
[91] | Sen S, Querques MA, Chakrabarti S. “North American ginseng (Panax quinquefolius) prevents hyperglycemia and associated pancreatic abnormalities in diabetes,” J Med Food. 2013; 16: 587–592 l. |
[92] | Xie JT, Mehendale SR, Wang A, et al. “American ginseng leaf: ginsenoside analysis and hypoglycemic activity,” Pharmacol Res. 2004; 49: 113–117. |
[93] | Kimura M, Waki I, Chujo T, et al. “Effects of hypoglycemic components in ginseng radix on blood insulin level in alloxan diabetic mice and on insulin release from perfused rat pancreas,” J Pharmaco Bio Dyn. 1981; 4: 410–417. |
[94] | Xie JT, Mehendale S, Yuan CS. “Ginseng and diabetes,” Am J Chin Med. 2005; 33: 397–404. |
[95] | Sen S, Chen S, Feng B, Yuexiu W, Lui EK, Chakrabarti S. “Preventive effects of North American ginseng (Panax quinquefolius) on diabetic retinopathy and cardiomyopathy,” Phytother Res. 2012; 27: 290–298. |
[96] | Sen S, Chen S, Feng B, Yuexiu W, Lui EM, Chakrabarti S. “Preventive effects of north American ginseng (Panax quinquefolium) on diabetic nephropathy,” Phytomedicine. 2012; 19: 494–505. |
[97] | Chakrabarti S, Sen S, Lui E. “Effect of ginseng therapy on diabetes and its chronic complications: lessons learned,” J Complement Integr Med. 2017 May 11; 14 (4). pii: /j/jcim.2017.14.issue-4/jcim-2016-0166/jcim-2016-0166.xml. doi: 10.1515/jcim-2016-0166. |
[98] | Qi LW, Liu EH, Chu C, Peng YB, Cai HX, Li P. “Anti-Diabetic Agents from natural products-An update from 2004 to 2009,” Curr Top Med Chem. 2010a; 10: 434–457. [PubMed: 20180758] |
[99] | Dey L, Xie JT, Wang A, Wu J, Maleckar SA, Yuan CS. “Anti-hyperglycemic effects of ginseng: comparison between root and berry,” Phytomedicine 2003; 10: 600–605. [PubMed: 13678250] |
[100] | Shang W, Yang Y, Jiang B, Jin H, Zhou L, Liu S, Chen M. “Ginsenoside Rb1 promotes adipogenesis in 3T3-L1 cells by enhancing PPARgamma2 and C/EBPalpha gene expression,” Life Sci 2007; 80: 618–625. [PubMed: 17129589] |
[101] | Shang W, Yang Y, Zhou L, Jiang B, Jin H, Chen M. “Ginsenoside Rb1 stimulates glucose uptake through insulin-like signaling pathway in 3T3-L1 adipocytes,” J Endocrinol. 2008; 198: 561–569. [PubMed: 18550785] |
[102] | Xie JT, Mehendale SR, Li X, Quigg R, Wang X, Wang CZ, Wu JA, Aung HH, PAR, Bell GI, Yuan CS. “Anti-diabetic effect of ginsenoside Re in ob/ob mice,” Biochim Biophys Acta. 2005b; 1740: 319–325. [PubMed: 15949698] |
[103] | Yokozawa T, Yasui T, Oura H. “Stimulation of rna-polymerase activity by ginsenoside-Rb2 in diabeticrats,” Phytother Res. 1993; 7: 240–243. |
[104] | Lee WK, Kao ST, Liu IM, Cheng JT. “Increase of insulin secretion by ginsenoside Rh2 to lower plasma glucose in wistar rats,” Clin Exp Pharmacol Physiol. 2006; 33: 27–32. [PubMed: 16445695] |
[105] | Yoon SH, Han EJ, Sung JH, Chung SH. “Anti-diabetic effects of compound K versus metformin versus compound K-metformin combination therapy in diabetic db/db mice,” Biol Pharm Bull. 2007; 30: 2196–2200. [PubMed: 17978500] |
[106] | Han KL, Jung MH, Sohn JH, Hwang JK. “Ginsenoside 20(S)-protopanaxatriol (PPT) activates peroxisome proliferator-activated receptor gamma (PPAR gamma) in 3T3-L1 adipocytes,” Biol Pharm Bull. 2006; 29: 110–113. [PubMed: 16394521] |
[107] | Lin E, Wang Y, Mehendale S, Wang CZ, Xie JT, Aung H, Yuan CS. “Antioxidant protection by American ginseng in pancreatic beta-cells,” Faseb J. 2005; 19: A97–A97. |
[108] | Lin E, Wang Y, Mehendale S, Sun S, Wang CZ, Xie JT, Aung HH, Yuan CS. “Antioxidant protection by American ginseng in pancreatic beta-cells,” Am J Chinese Med. 2008; 36: 981–988. |
[109] | Park S, Ahn IS, Kwon DY, Ko BS, Jun WK. “Ginsenosides Rb1 and Rg1 suppress triglyceride accumulation in 3T3-L1 adipocytes and enhance beta-cell insulin secretion and viability in Min6 cells via PKA-dependent pathways,” Biosci Biotechnol Biochem. 2008; 72: 2815–2823. [PubMed: 18997435] |
[110] | Kim HY, Kang KS, Yamabe N, Nagai R, Yokozawa T. “Protective effect of heat-processed American ginseng against diabetic renal damage in rats,” J Agr Food Chem. 2007a; 55: 8491–8497. [PubMed: 17894462] |
[111] | Stohs SJ. “The role of free radicals in toxicity and disease,” J Basic Clin Physiol Pharmacol 1995; 6: 205–228. [PubMed: 8852268] |
[112] | Cetin A, Kaynar L, Kocyigit I, Hacioglu SK, Saraymen R, Ozturk A, Sari I, Sagdic O. “Role of grape seed extract on methotrexate induced oxidative stress in rat liver,” Am J Chin Med 2008; 36: 861–872. [PubMed: 19051353] |
[113] | Xie JT, Wang CZ, Li XL, Ni M, Fishbein A, Yuan CS. “Anti-diabetic effect of American ginseng may not be linked to antioxidant activity: comparison between American ginseng and Scutellaria baicalensis using an ob/ob mice model,” Fitoterapia 2009; 80: 306–311. [PubMed: 19358881] |
[114] | Shen, L., Haas, M., Wang, D. Q., May, A., Lo, C. C., Obici, S., Tso, P., Woods, S. C., Liu, M., 2015. “Ginsenoside Rb1 increases insulin sensitivity by activating AMP-activated protein kinase in male rats,” Physiol. Rep. 3, e12543. |
[115] | Corbit R, Ebbs S, King ML, Murphy LL. “The influence of lead and arsenite on the inhibition of human breast cancer MCF-7 cell proliferation by American ginseng root (Panax quinquefolius L.),” Life Sci 2006; 78: 1336–1340. [PubMed: 16288926] |
[116] | Duda RB, Zhong Y, Navas V, Li MZ, Toy BR, Alavarez JG. “American ginseng and breast cancer therapeutic agents synergistically inhibit MCF-7 breast cancer cell growth,” J Surg Oncol 1999; 72: 230–239. [PubMed: 10589039] |
[117] | Wang CZ, Aung HH, Ni M, Wu JA, Tong R, Wicks S, He TC, Yuan CS. “Red American ginseng: ginsenoside constituents and antiproliferative activities of heat-processed Panax quinquefolius roots,” Planta Med 2007; 73: 669–674. [PubMed: 17538869] |
[118] | Wang CZ, Zhang B, Song WX, Wang A, Ni M, Luo X, Aung HH, Xie JT, Tong R, He TC, Yuan CS. “Steamed American ginseng berry: ginsenoside analyses and anticancer activities,” J Agric Food Chem 2006; 54: 9936–9942. [PubMed: 17177524] |
[119] | Xie JT, Wang CZ, Zhang B, Mehendale SR, Li XL, Sun S, Han AH, Du W, He TC, Yuan CS. “In vitro and in vivo anticancer effects of American ginseng berry: exploring representative compounds,” Biol Pharm Bull 2009; 32: 1552–1558. [PubMed: 19721231] |
[120] | Yue PY, Wong DY, Wu PK, Leung PY, Mak NK, Yeung HW, Liu L, Cai Z, Jiang ZH, Fan TP, Wong RN. “The angiosuppressive effects of 20(R)- ginsenoside Rg3,” Biochem Pharmacol 2006; 72: 437–445. [PubMed: 16793023] |
[121] | Kim SY, Kim DH, Han SJ, Hyun JW, Kim HS. “Repression of matrix metalloproteinase gene expression by ginsenoside Rh2 in human astroglioma cells,” Biochem Pharmacol 2007; 74: 1642– 1651. [PubMed: 17880928] |
[122] | Kim SM, Lee SY, Cho JS, Son SM, Choi SS, Yun YP, Yoo HS, Yoon do Y, Oh KW, Han SB, Hong JT. “Combination of ginsenoside Rg3 with docetaxel enhances the susceptibility of prostate cancer cells via inhibition of NF-kappaB,” Eur J Pharmacol 2010; 631: 1–9. [PubMed: 20056115] |
[123] | Duda RB, Kang SS, Archer SY, Meng S, Hodin RA. “American ginseng transcriptionally activates p21 mRNA in breast cancer cell lines,” J Korean Med Sci 2001; 16 (Suppl): S54–60. [PubMed: 11748377] |
[124] | Park JA, Lee KY, Oh YJ, Kim KW, Lee SK. “Activation of caspase-3 protease via a Bcl-2- insensitive pathway during the process of ginsenoside Rh2-induced apoptosis,” Cancer Lett 1997; 121: 73–81. [PubMed: 9459177] |
[125] | Jia WW, Bu X, Philips D, Yan H, Liu G, Chen X, Bush JA, Li G. “Rh2, a compound extracted from ginseng, hypersensitizes multidrug-resistant tumor cells to chemotherapy,” Can J Physiol Pharmacol 2004; 82: 431–437. [PubMed: 15389289] |
[126] | Luo X, Wang CZ, Chen J, Song WX, Luo J, Tang N, He BC, Kang Q, Wang Y, Du W, He TC, Yuan CS. “Characterization of gene expression regulated by American ginseng and ginsenoside Rg3 in human colorectal cancer cells,” Int J Oncol 2008; 32: 975–983. [PubMed: 18425323] |
[127] | Aung HH, Mehendale SR, Wang CZ, Xie JT, McEntee E, Yuan CS. “Cisplatin’s tumoricidal effect on human breast carcinoma MCF-7 cells was not attenuated by American ginseng,” Cancer Chemother Pharmacol 2007; 59: 369–374. [PubMed: 16799811] |
[128] | Mehendale S, Aung H, Wang A, Yin JJ, Wang CZ, Xie JT, Yuan CS. “American ginseng berry extract and ginsenoside Re attenuate cisplatin-induced kaolin intake in rats,” Cancer Chemother Pharmacol 2005; 56: 63–69. [PubMed: 15791456] |
[129] | Qi LW, Wang CZ, Yuan CS. “American ginseng: Potential structure-function relationship in cancer chemoprevention,” Biochem Pharmacol. 2010b; 80: 947–954. [PubMed: 20599804] |
[130] | Wang CZ, Li XL, Wang QF, Mehendale SR, Fishbein AB, Han AH, Sun S, Yuan CS. “The mitochondrial pathway is involved in American ginseng-induced apoptosis of SW-480 colon cancer cells,” Oncol Rep. 2009a; 21: 577–584. [PubMed: 19212614] |
[131] | Li XL, Wang CZ, Sun S, Mehendale SR, Du W, He TC, Yuan CS. “American ginseng berry enhances chemopreventive effect of 5-FU on human colorectal cancer cells,” Oncol Rep. 2009d; 22: 943–952. [PubMed: 19724877] |
[132] | Pawar AA, Tripathi DN, Ramarao P, Jena G. “Protective effects of American ginseng (Panax quinquefolium) against mitomycin C induced micronuclei in mice,” Phytother Res. 2007; 21: 1221–1227. [PubMed: 17661327] |
[133] | Sun S, Qi LW, Du GJ, Mehendale SR, Wang CZ, Yuan CS. “Red notoginseng: higher ginsenoside content and stronger anticancer potential than Asian and American ginseng,” Food Chem. 2011; 125: 1299–1305. [PubMed: 21344064] |
[134] | Sengupta S, Toh SA, Sellers LA, Skepper JN, Koolwijk P, Leung HW, Yeung HW, Wong RNS, Sasisekharan R, Fan TPD. “Modulating angiogenesis - The yin and the yang in ginseng,” Circulation. 2004; 110: 1219–1225. [PubMed: 15337705] |
[135] | Jin Y, Kotakadi VS, Ying L, Hofseth AB, Cui XL, Wood PA, Windust A, Matesic LE, Pena EA, Chiuzan C, Singh NP, Nagarkatti M, Nagarkatti PS, Wargovich MJ, Hofseth LJ. “American ginseng suppresses inflammation and DNA damage associated with mouse colitis,” Carcinogenesis. 2008; 29: 2351–2359. [PubMed: 18802031] |
[136] | Jin Y, Hofseth AB, Cui XL, Windust AJ, Poudyal D, Chumanevich AA, Matesic LE, Singh NP, Nagarkatti M, Nagarkatti PS, Hofseth LJ. “American ginseng suppresses colitis through p53-mediated apoptosis of inflammatory cells,” Cancer Prev Res. 2010; 3: 339–347. |
[137] | King ML, Murphy LL. “Role of cyclin inhibitor protein p21 in the inhibition of HCT116 human colon cancer cell proliferation by American ginseng (Panax quinquefolius) and its constituents. Phytomedicine,” 2010; 17: 261–268. [PubMed: 19674880] |
[138] | Lee SJ, Ko WG, Kim JH, Sung JH, Lee SJ, Moon CK, Lee BH. “Induction of apoptosis by a novel intestinal metabolite of ginseng saponin via cytochrome c-mediated activation of caspase-3 protease,” Biochem Pharmacol. 2000; 60: 677–685. [PubMed: 10927026] |
[139] | Peralta EA, Murphy LL, Minnis J, Louis S, Dunnington GL. “American ginseng inhibits induced COX-2 and NFKB activation in breast cancer cells,” J Surg Res. 2009; 157: 261–267. [PubMed: 19815237] |
[140] | Ichikawa T, Li JQ, Nagarkatti P, Nagarkatti M, Hofseth LJ, Windust A, Cui TX. “American ginseng preferentially suppresses STAT/iNOS signaling in activated macrophages,” J Ethnopharmacol. 2009; 125: 145–150. [PubMed: 19505555] |
[141] | Li BH, Wang CZ, He TC, Yuan CS, Du W. “Antioxidants potentiate American ginseng-induced killing of colorectal cancer cells,” Cancer Lett. 2010a; 289: 62–70. [PubMed: 19716228] |
[142] | Aggarwal BB, Van Kuiken ME, Iyer LH, Harikumar KB, Sung B. “Molecular Targets of Nutraceuticals Derived from Dietary Spices: Potential Role in Suppression of Inflammation and Tumorigenesis,” Exp Biol Med. 2009; 234: 825–849. |
[143] | Cui X, Jin Y, Poudyal D, Chumanevich AA, Davis T, Windust A, Hofseth A, Wu W, Habiger J, Pena E, Wood P, Nagarkatti M, Nagarkatti PS, Hofseth L. “Mechanistic insight into the ability of American ginseng to suppress colon cancer associated with colitis,” Carcinogenesis. 2010 Oct; 31 (10): 1734-41. doi: 10.1093/carcin/bgq163. Epub 2010 Aug 20. |
[144] | Poudyal D, Cui X, Mai Le P, Davis T, Hofseth AB, Jin Y, Chumanevich AA, Wargovich MJ, Nagarkatti M, Nagarkatti PS, Windust A, Hofseth LJ. “A limited role of p53 on the ability of a Hexane fraction of American ginseng to suppress mouse colitis,” J Biomed Biotechnol. 2012; 2012: 785739. doi: 10.1155/2012/785739. Epub 2012 Jul 30. |
[145] | Poudyal D, Le PM, Davis T, Hofseth AB, Chumanevich A, Chumanevich AA, Wargovich MJ, Nagarkatti M, Nagarkatti PS, Windust A, Hofseth LJ. “A hexane fraction of American ginseng suppresses mouse colitis and associated colon cancer: anti-inflammatory and proapoptotic mechanisms,” Cancer Prev Res (Phila). 2012 Apr; 5 (4): 685-96. doi: 10.1158/1940-6207.CAPR-11-0421. Epub 2012 Jan 31. |
[146] | Chan PC, Huff J. “Hexane fraction of American ginseng suppresses colitis and colon cancer,” Cancer Prev Res (Phila). 2012 Jul; 5 (7): 982; author reply 983. doi: 10.1158/1940-6207.CAPR-12-0079. Epub 2012 May 25. |
[147] | Yu CH, Wang CZ, Yuan CS. “[Progress in anti-cancer research of American ginseng: with an example of colorectal cancer],” Yao Xue Xu |
APA Style
Vandenhouten Eric E., Li Yan, Ying Wang. (2019). Pharmacological and Clinical Efficacy of American Ginseng (Panax Quinquefolius): A Mini Review. International Journal of Chinese Medicine, 3(4), 64-79. https://doi.org/10.11648/j.ijcm.20190304.13
ACS Style
Vandenhouten Eric E.; Li Yan; Ying Wang. Pharmacological and Clinical Efficacy of American Ginseng (Panax Quinquefolius): A Mini Review. Int. J. Chin. Med. 2019, 3(4), 64-79. doi: 10.11648/j.ijcm.20190304.13
AMA Style
Vandenhouten Eric E., Li Yan, Ying Wang. Pharmacological and Clinical Efficacy of American Ginseng (Panax Quinquefolius): A Mini Review. Int J Chin Med. 2019;3(4):64-79. doi: 10.11648/j.ijcm.20190304.13
@article{10.11648/j.ijcm.20190304.13, author = {Vandenhouten Eric E. and Li Yan and Ying Wang}, title = {Pharmacological and Clinical Efficacy of American Ginseng (Panax Quinquefolius): A Mini Review}, journal = {International Journal of Chinese Medicine}, volume = {3}, number = {4}, pages = {64-79}, doi = {10.11648/j.ijcm.20190304.13}, url = {https://doi.org/10.11648/j.ijcm.20190304.13}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ijcm.20190304.13}, abstract = {American Ginseng (Panax quinquefolius, AG) is a standout amongst the most perceived herbal botanicals in Oriental Medicine and the alternative healthcare market. In spite of the fact that AG is not as broadly studied as Panax Ginseng, none the less, AG is one of the best-selling herbs in the world market, and has gathered expanding attention from researchers as of late. AG is grown in the United States of America, Canada, and The People's Republic of China, on subject of AG industry and quality standards Wisconsin Ginseng is considered to be the gold standard for the highest quality grown worldwide. AG has been farmed in Wisconsin, U.S., for more than 100 years, dating back to the 1800’s which birthed the artificially propagated industry. Today, Wisconsin Ginseng farmers account for 95 percent of the total cultivated AG production of the United States which continues to attract the studies of researcher professionals to the environmentally clean and regulated grown Wisconsin source of origin. Ongoing studies have demonstrated that through the numerous unregulated cultivated procedures that AG is grown, fungal molds, pesticides, and various metals and residues have contaminated the crops. Scientific investigations of AG in the past decade have increased drastically due to the increasing demand of herbal derived biomedicines from natural botanical plant sources that have demonstrated significant potential in clinical efficacy of important diseases. AG Past studies demonstrated have shown ginseng saponins called ginsenosides are the major active constituents in AG. The investigations of AG were relatively limited in the previous decade, but some encouraging advances have been accomplished in understanding the chemistry, pharmacology and structure-function relationship of AG and its clinical efficacy. In this manner, we review pharmacological effects of the ginsenosides, also the clinical efficacy on the cardiovascular system, immune system, and nervous system as well as metabolism and anti-cancer effects. Concentrating on the clinical evidence has indicated particular effectiveness in specific diseases, such as diabetes mellitus, arterial stiffness, neurocognitive disorders, and cancer fatigue as a recommended adjunct treatment along with supplementing conventional therapy.}, year = {2019} }
TY - JOUR T1 - Pharmacological and Clinical Efficacy of American Ginseng (Panax Quinquefolius): A Mini Review AU - Vandenhouten Eric E. AU - Li Yan AU - Ying Wang Y1 - 2019/12/02 PY - 2019 N1 - https://doi.org/10.11648/j.ijcm.20190304.13 DO - 10.11648/j.ijcm.20190304.13 T2 - International Journal of Chinese Medicine JF - International Journal of Chinese Medicine JO - International Journal of Chinese Medicine SP - 64 EP - 79 PB - Science Publishing Group SN - 2578-9473 UR - https://doi.org/10.11648/j.ijcm.20190304.13 AB - American Ginseng (Panax quinquefolius, AG) is a standout amongst the most perceived herbal botanicals in Oriental Medicine and the alternative healthcare market. In spite of the fact that AG is not as broadly studied as Panax Ginseng, none the less, AG is one of the best-selling herbs in the world market, and has gathered expanding attention from researchers as of late. AG is grown in the United States of America, Canada, and The People's Republic of China, on subject of AG industry and quality standards Wisconsin Ginseng is considered to be the gold standard for the highest quality grown worldwide. AG has been farmed in Wisconsin, U.S., for more than 100 years, dating back to the 1800’s which birthed the artificially propagated industry. Today, Wisconsin Ginseng farmers account for 95 percent of the total cultivated AG production of the United States which continues to attract the studies of researcher professionals to the environmentally clean and regulated grown Wisconsin source of origin. Ongoing studies have demonstrated that through the numerous unregulated cultivated procedures that AG is grown, fungal molds, pesticides, and various metals and residues have contaminated the crops. Scientific investigations of AG in the past decade have increased drastically due to the increasing demand of herbal derived biomedicines from natural botanical plant sources that have demonstrated significant potential in clinical efficacy of important diseases. AG Past studies demonstrated have shown ginseng saponins called ginsenosides are the major active constituents in AG. The investigations of AG were relatively limited in the previous decade, but some encouraging advances have been accomplished in understanding the chemistry, pharmacology and structure-function relationship of AG and its clinical efficacy. In this manner, we review pharmacological effects of the ginsenosides, also the clinical efficacy on the cardiovascular system, immune system, and nervous system as well as metabolism and anti-cancer effects. Concentrating on the clinical evidence has indicated particular effectiveness in specific diseases, such as diabetes mellitus, arterial stiffness, neurocognitive disorders, and cancer fatigue as a recommended adjunct treatment along with supplementing conventional therapy. VL - 3 IS - 4 ER -