Abstract: This paper is the theory for the speed of gravitational waves and comparison of it with the speed of light. The GW (Gravitational Waves) have been observed [1] and the role of dark energy and cold dark matter are being studied [2, 3], but the key role of gravitational waves speed in the stability of cosmic formations has not been studied much. LIGO discovered the gravitational waves (2015). General relativity predicts for a strong gravitational lens that light and GW travel at the same speed. Blas et al. (2016) showed that the ratio of the speeds of gravitational waves and of light is . Moore and Nelson (2001) showed that: , etc. [2]. As is discussed here gravitational waves speed should be much more than the speed of light. Nowadays, almost all of the instruments that are used for studying in Astronomy and Astrophysics are some how related to the applications of radio frequency rays, infra red, visible light, ultra violet rays, X-rays and Gama rays that in general name are called electromagnetic waves. The light speed in vacuum; is the highest speed that so far has been known in Physics [4]. Comparing the speed of light to the cosmic distances and using it as a communication tool, it looks like the speed of snail on the ground. Gravity is one of important forces responsible for relative stability of galaxies, solar systems, planetary systems, etc. By discovering, producing, transmitting and receiving the gravitation waves like the knowledge that exists about electromagnetic waves now, it could be a great help for very fast communication tool and also new big and clear window, etc. to the Universe. But before that, at first it should be studied whether the speed of gravity field propagation is much more that the speed of light or not.Abstract: This paper is the theory for the speed of gravitational waves and comparison of it with the speed of light. The GW (Gravitational Waves) have been observed [1] and the role of dark energy and cold dark matter are being studied [2, 3], but the key role of gravitational waves speed in the stability of cosmic formations has not been studied much. LIG...Show More
Abstract: The intensities observed along nadiar at the top of atmosphere as a function of solar zenith angle for ƛ = 0.55 micron, haze o refractive index m = 1.50 – 0.031 and aerosols distributed over 0.03 to 10 micron range. As the solar zenith angle increases, the increases in effective atmosphericpath leads to decrease in intensity – approaching to zero a solar zenith of 90. The rate of decrease of intensity with solar zenith angle is more for higher values of reflectivity. The variation with the solar zenith angle at the top of the atmosphere of upward – travelling radiance for each of the lands at bands as seen at an altitude of 45.538 for a surface reflectivity of 0.2. this uses an atmospheric model based on the vertical distribution and content of ozone, aerosol and water vapour for an average mid-latitude summer. Atmosphere.since the solar flux is highest in the spectral interval 0.5-0.6 micron, the upward radiance received by that hand is higher than any other band. Also as the solar zenith angle increases, the upward radiance diminishes as expected because of the added path length through which the solar flux must pass.Abstract: The intensities observed along nadiar at the top of atmosphere as a function of solar zenith angle for ƛ = 0.55 micron, haze o refractive index m = 1.50 – 0.031 and aerosols distributed over 0.03 to 10 micron range. As the solar zenith angle increases, the increases in effective atmosphericpath leads to decrease in intensity – approaching to zero a...Show More