| Peer-Reviewed

Preliminary Phytochemical Screening of Five Commercial Essential Oils

Received: 4 August 2017     Accepted: 4 September 2017     Published: 6 December 2017
Views:       Downloads:
Abstract

The discovery of natural resources from plants remains crucial for the development of new therapeutic remedies. The present study focused on the phytochemical study of commercial essential oils of certain medicinal plants: Thym (Thymus vulgaris), basil (Ocimum basilicum), sage (Salvia officinalis), Garden cress (Lepidium sativum) and lettuce (Lactuca sativa). The qualitative dosage of twelve secondary metabolites showed the presence of terpenoids and saponins in all tested oils while steroids, alkaloids, anthraquinones and phlobatannins were absent. The results obtained are encouraging and the secondary metabolites present in these oils were responsible for certain activities, hence the interest of their uses in traditional phytotherapy as well as the pharmacological and cosmetic field.

Published in World Journal of Applied Chemistry (Volume 2, Issue 4)
DOI 10.11648/j.wjac.20170204.16
Page(s) 145-151
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2017. Published by Science Publishing Group

Keywords

Commercial Essential Oils, Phytochemical Study, Secondary Metabolites

References
[1] T. Matsumoto, “Phytochemistry Research Progress,” Nova Publishers, 2008.
[2] S. Malathi, and R. Rajan, “Free radical scavenging activity, TLC, HPTLC and GCMS analysis of dry flower of Michelia champaca Linn,” World Journal of Pharmaceutical Research, 4(12), pp. 1576-1602, 2015.
[3] M. S. Kumar, M. R. K. Rao, N. K. Jha, and P. Ranjan, “Comparitive study on phytochemicals from leaves of Menthapiperita (Mint), Psidiumguajava (Guava) and Moringaoleifera (Drumstick),” Journal of Pharmacy Research, 1(2), pp. 223-226, 2013.
[4] R. Shalini, and S. Velavan, “Analysis of biactive compounds and inorganic elemental analysis in Aplotaxis auriculata rhizomes,” Journal of Pharmacognosy and Phytochemistry, 6(1), pp. 207-210, 2017.
[5] L. Wulandari, Y. Retnaningtyas, Nuri, and H. Lukman, “Analysis of Flavonoid in Medicinal Plant Extract Using Infrared Spectroscopy and Chemometrics,” Journal of Analytical Methods in Chemistry, 2016, Article ID 4696803, 6 pages, 2016.
[6] M. M. Fani, and J. Kohanteb, “In Vitro antimicrobial activity of Thymus vulgaris essential oil against major oral pathogens,” Journal of Evidence-Based Complementary & Alternative Medicine, 1-7, 2017.
[7] E. M. A. Dauqan, and A. Abdullah, “Medicinal and Functional Values of Thyme (Thymus vulgaris L.) Herb,” Journal of Applied Biology & Biotechnology, 5 (02), pp. 17-22, 2017.
[8] E. Basch, C. Ulbricht, Hammerness P, Bevins A, and D. Sollars, “Thyme (Thymus vulgaris L.), thymol,” J Herb Pharmacother, 4, pp. 49–67, 2004.
[9] F. C. Fachini-Queiroz, R. Kummer, C. F. Estevão-Silva, M. D. Carvalho de B, J. M. Cunha, R. Grespan, and R. K. N. Cuman, “Effects of Thymol and Carvacrol, Constituents of Thymus vulgaris L. Essential Oil, on the Inflammatory Response,” Evidence-Based Complementary and Alternative Medicine: eCAM, 2012, 657026, 2012.
[10] S. E. Sajjadi, “Analysis of the essential oils of two cultivated basil (Ocimum basilicum L.) from Iran,” Daru, 14(3), 128-130, 2006.
[11] I. Hussain, F. Anwara, S. T. H. Sherazi, R. Przybylski, “Chemical composition, antioxidant and antimicrobial activities of basil (Ocimum basilicum) essential oils depends on seasonal variations,” Food Chem, 108(3), pp. 986–95, 2008.
[12] RK. Joshi, “Chemical composition and antimicrobial activity of the essential oil of Ocimum basilicum L. (sweet basil) from Western Ghats of North West Karnataka, India,” Ancient Science of Life, 33(3), pp. 151–156, 2014.
[13] S. Dube, P. D. Upadhyay, and S. C. Tripathi, “Antifungal, physicochemical and insect-repelling activity of the essential oil of Ocimum basilicum,” Can J Bot. 67, pp. 2085–7, 1989.
[14] M. Ismail, “Anticonvulsant and hypnotic activities central properties and chemical composition of Ocimum basilicum L. essential oil,” Pharm Biol. 44, pp. 619–26, 2006.
[15] O. Politeo, M. Jukic, and M. Milos, “Chemical composition and antioxidant capacity of free volatile aglycones from basil (Ocimum basilicum L.) compared with its essential oil,” Food Chem. 101, pp. 379–85, 2007.
[16] I. Kaya, N. Yigit, and M. Benli, “Antimicrobial Activity of Various Extracts of Ocimum Basilicum L. and Observation of the Inhibition Effect on Bacterial Cells by Use of Scanning Electron Microscopy,” African Journal of Traditional, Complementary, and Alternative Medicines, 5(4), pp. 363–369, 2008.
[17] R. F. Bakr, H. M. Fattah, N. M. Salim, and N. H. Atiya, “Insecticidal activity of four volatile oils on two museum insects pests of Egypt,” Acad J Biolog Sci, 2, pp. 57-66, 2010.
[18] M. T. Shirazi, H. Gholami, G. Kavoosi, V. Rowshan and A. Tafsiry, “Chemical composition, antioxidant, antimicrobial and cytotoxic activities of Tagetes minuta and Ocimum basilicum essential oils,” Food Science & Nutrition, 2(2), pp. 146–155, 2014.
[19] D. W. Al Abbasy, N. Pathare, J. N. Al-Sabahi, and S. A. Khan, “Chemical composition and antibacterial activity of essential oil isolated from Omani basil (Ocimum basilicum Linn.),” Asian Pac J Trop Dis. 5, pp. 645–9, 2015.
[20] N. H. El-Soud, M. Deabes, L. A. El-Kassem, and M. Khalil, “Chemical Composition and Antifungal Activity of Ocimum basilicum L. Essential Oil,” Open Access Maced J Med Sci. 3(3), pp. 374-9, 2015.
[21] V. Rowshan, and S. Najafian, “Evaluation of the essential oil composition of Salvia officinalis L. by different drying methods in full flowering stages,” Intl J Farm & Alli Sci, 2 (12), pp. 350-354, 2013.
[22] R. Hamidpour, S. Hamidpour, M. Hamidpour, and M. Shahlari, “Sage: The functional novel natural medicine for preventing and curing chronic illnesses,” International Journal of Case Reports and Images, 4(12), pp. 671–677, 2013.
[23] L. A. P. Delamare, I. T. Moschen-Pistorello, L. Artico, L. Atti-Serafini, and S. Echeverrigaray, “Antibacterial activity of the essential oils of Salvia officinalis L. and Salvia triloba L. cultivated in South Brazil. Food Chemistry,” 100(2), pp. 603–608, 2007.
[24] M. R. Loizzo, R. Tundis, F. Menichini, A. M. Saab, G. A. Statti, F. Menichini, “Cytotoxic activity of essential oils from labiatae and lauraceae families against in vitro human tumor models,” Anticancer Res. 27(5A), pp. 3293-9, 2007.
[25] S. Sertel, T. Eichhorn, P. K. Plinkert, and T. Efferth, “Anticancer activity of Salvia officinalis essential oil against HNSCC cell line (UMSCC1),” HNO. 59(12), pp. 1203-8, 2011.
[26] M. R. Loizzo, A. M. Saab, R. Tundis, G. A. Statti, F. Menichini, I. Lampronti, R. Gambari, J. Cinatl, H. W. Doerr, “Phytochemical analysis and in vitro antiviral activities of the essential oils of seven Lebanon species,” Chem. Biodiv. 5(3), pp. 461–470, 2008.
[27] M. Zia-Ul-Haq, S. Ahmad, L. Calani, T. Mazzeo, D. Del Rio, N. Pellegrini, and V. De Feo, “Compositional study and antioxidant potential of Ipomoea hederacea Jacq. and Lepidium sativum L. seeds,” Molecules. 17(9), pp. 10306-21, 2012.
[28] M. A. Al-Yahya, J. S. Mossa, A. M. Ageel, and S. Rafatullah, “Pharmacological and safety evaluation studies on Lepidium sativum L., Seeds,” Phytomedicine. 1(2), pp. 155-9, 1994.
[29] M. H. Haider, “Analysis of trace heavy metals and volatile chemical compounds of Lepidium sativum using atomic absorption spectroscopy, gas chromatography-mass spectrometric and fourier-transform infrared spectroscopy,” RJPBCS, 7(4), pp. 2529- 2555, 2016.
[30] M. Maghrani, N-A. Zeggwagh, J-B. Michel, and M. Eddouks, “Antihypertensive effect of Lepidium sativum L. in spontaneously hypertensive rats,” J. Ethnopharmacol., 100, pp. 193-197, 2005.
[31] U. Patel, M. Kulkarni, V. Undale, and A. Bhosale, “Evaluation of Diuretic Activity of Aqueous and Methanol extracts of Lepidium sativum Garden Cress (Cruciferae) in Rats,” Trop J Pharm Res; 8(3), pp. 215-219, 2009.
[32] A. N. Paranjape, and AA. Mehta, “A study on clinical efficacy of Lepidium sativum seeds in treatment of bronchial asthma,” Iran. J. Pharmacol. Ther, 5, pp. 55-59, 2006.
[33] A. Patole, V. Agte, and M. Phadnis, “Effect of mucilaginous seeds on in vitro rate of starch hydrolysis and blood glucose levels of NIDDM subjects with special reference to garden cress seeds,” J. Med. Aromat. Plant Sci., 20, pp. 1005-1008, 1998.
[34] Y. C. Yadav, D. N. Srivastav, A. K. Seth, V. Saini, R. Balaraman, and T. K. Ghelani, “In vivo antioxidant potential of Lepidium sativum seeds in albino rats using cisplatin induced nephrotoxicity,” Int. J. Phytomed, 2, pp. 292-298, 2010.
[35] J. Agarwal and D. L. Verma, “Antioxidant activity-guided fractionation of aqueous extracts from Lepidium sativum and identification of active flavonol glycosides,” Acad. Arena, 3, pp. 14-18, 2011.
[36] N. D. Raval, B. Ravishankar, and B. K. Ashok, “Anti-inflammatory effect of Chandrashura (Lepidium sativum Linn.) an experimental study,” AYU, 34, pp. 302-304, 2013.
[37] I. L. Nonnecke, “Vegetable Production,” Springer Science & Business Media. 657 pages, 1989.
[38] R. S. S. Al Nomaani, M. A. Hossain, A. M. Weli, Q. Al-Riyami, and J. N. Al-Sabahi, “Chemical composition of essential oils and in vitro antioxidant activity of fresh and dry leaves crude extracts of medicinal plant of Lactuca Sativa L. native to Sultanate of Oman,” Asian Pac J Trop Biomed, 3(5), pp. 353-357, 2013.
[39] C. Nicolle, N. Cardinault, E. Gueux, L. Jaffrelo, E. Rock, A. Mazur, P. Amouroux, and C. Rémésy, “Health effect of vegetable-based diet: lettuce consumption improves cholesterol metabolism and antioxidant status in the rat,” Clin Nutr. 23(4), pp. 605-14, 2004.
[40] M. Serafini, R. Bugianesi, M. Salucci, E. Azzini, A. Raguzzini, and G. Maiani, “Effect of acute ingestion of fresh and stored lettuce (Lactuca sativa) on plasma total antioxidant capacity and antioxidant levels in human subjects,” Br J Nutr. 88(6), pp. 615-23, 2002.
[41] Chu YF, Sun J, Wu X, and R. H. Liu, “Antioxidant and antiproliferative activities of common vegetables,” J Agric Food Chem. 50(23), pp. 6910-6, 2002.
[42] M. Sayyah, N. Hadidi, and M. Kamalinejad, “Analgesic and anti-inflammatory activity of Lactuca sativa seed extract in rats,” J Ethnopharmacol. 92(2-3), pp. 325-9, 2004.
[43] H. L. Edziri, M. A. Smach, S. Ammar, M. A. Mahjoub, Z. Mighri, M. Aouni, and M. Mastouri, “Antioxidant, antibacterial, and antiviral effects of Lactuca sativa extracts,” Ind Crop Prod. 34, pp. 1182–1185, 2011.
[44] J. B. Harborne, Methods of extraction and isolation, In: Phytochemical Methods, Chapman & Hall, London, pp. 60-66, 1998.
[45] K. A. Abo, S. W. Lasaki, and A. A. Adeyemi, “Laxative and antimicrobial properties of cassia species growing in Ibadan,” Nig. J. Nat. Prod. Med. 8, pp. 47–50, 1999.
[46] I. Kindo, S. J. Britto, R. R. Marandi, M. George, and E. Minj, “In vitro antibacterial and preliminary phytochemical studies of Andrographis paniculata (Burm. F.) Nees,” Asian J. Pharm. Res. 6(1), pp. 7-11, 2016.
[47] J. Ngbede, R. A. Yakubu, and D. A. Nyann, “Phytochemical screening for active compounds in canarium schweinfurthii (Atile) leaves from Jos North, Plateau state, Nigeria,” Res. J. Biol. Sci. 3 (9), pp. 1076-1078, 2008.
[48] D. S. Seigler, “Plants with saponins and cardiac glycosides,” www.lifwe.vinc.edu/plantbio/363/saponinslides. 1998.
[49] D. A. Sodipo, M. A. Akani, F. B. Kolawale, and A. A. Odutuga, “Saponins as the active antifungal principle in Garcinia kola Heckel seed,” Bioscience Research Communication 3, pp. 151, 1991.
[50] W. C. Evans, “Trease and Evans Pharmacognosy,” 15th Edition, Elsevier, India, 2002.
[51] T. Moses, K. K. Papadopoulou and A. Osbourn, “Metabolic and functional diversity of saponins, biosynthetic intermediates and semi-synthetic derivatives,” Critical Reviews in Biochemistry and Molecular Biology, 49(6), pp. 439–462, 2014.
[52] K. Hostettmann, and A. Marston, “Saponins, Chemistry and Pharmacology of Natural Products,” Cambridge University Press, page 1, 2005.
[53] E. Moghimipour and S. Handali, “Saponin: Properties, Methods of Evaluation and Applications,” Annual Research & Review in Biology, 5(3), pp. 207-220, 2015.
[54] A. R. El Barky, S. A. Hussein, A. A. Alm-Eldeen, Y. A. Hafez, and T. M. Mohamed, “Saponins and their Potential Role in Diabetes Mellitus,” Diabetes Manag. 7, pp. 148–158, 2017.
[55] N. Yadav, R. Yadav, and A. Goyal, “Chemistry of Terpenoids,” Int. J. Pharm. Sci. Rev. Res., 27(2), pp. 272-278, 2014.
[56] R. Paduch, M. Kandefer-Szerszeń, M. Trytek, and J. Fiedurek, “Terpenes: Substances useful in human healthcare,” Arch Immunol Ther Exp, 55, pp. 315–327, 2007.
[57] R. J. Thoppil and A. Bishayee, “Terpenoids as potential chemopreventive and therapeutic agents in liver cancer,” World Journal of Hepatology, 3(9), pp. 228–249, 2011.
[58] D. Hernandez-Saavedra, I. F. Perez-Ramirez, M. Ramos-Gomez, S. Mendoza-Diaz, G. Loarca-Pina, and R. Reynoso-Camacho, “Phytochemical characterization and effect of Calendula officinalis, Hypericum perforatum, and Salvia officinalis infusions on obesity-associated cardiovascular risk,” Med Chem Res. 25(1), pp. 163–172, 2016.
[59] S. M. Kadhim, M. T. Mohammed, O. M. Ahmed, and A. M. N. Jassim, “Study of Some Salvia Officinalis L.(Sage) Components and Effect of Their Aqueous Extract on Antioxidant,” International Journal of Chemical Sciences, 14(2), pp. 711-719, 2016.
[60] M. Hamidpour, R. Hamidpour, S. Hamidpour, and M. Shahlari, “Chemistry, Pharmacology, and Medicinal Property of Sage (Salvia) to Prevent and Cure Illnesses such as Obesity, Diabetes, Depression, Dementia, Lupus, Autism, Heart Disease, and Cancer,” Journal of Traditional and Complementary Medicine. 4(2), pp. 82-88, 2014.
[61] A. Mekhaldi, A. Bouznad, R. Djibaoui, and H. Hamoum, “Phytochemical Study and Biological Activity of Sage (Salvia officinalis L.),” International Journal of Biological, Biomolecular, Agricultural, Food and Biotechnological Engineering. 8(11), pp. 1258-1262, 2014.
[62] M. Coisin, I. Burzo, M. Stefan, E. Rosenhech, and M. M. Zamfirache, “Chemical composition and antibacterial activity of essential oils of three Salvia species, widespread in Eastern Romania,” An. Stiint. Univ. Al. I. Cuza Iasi Sect. II a. Biol. Veget. 58, pp. 51–58, 2012.
[63] M. Lopez-Lazaro, “Distribution and biological activities of the flavonoid luteolin,” Mini Reviews in Medicinal Chemistry, 9, pp. 31-59, 2009.
[64] I. Mašterová, D. Uhrín, V. Kettmann, and V. Suchý, “Phytochemical study of Salvia officinalis L.,” Chemical Papers, 43 (6), pp. 797–803, 1989.
[65] S. S. Nema, M. A. Tohamy, H. A. El-Banna, M. Radi. Abeer, A. A. El-Gendy, and A. I. Owis, “Phytochemical and pharmacological studies of ethanolic extract of Thymus vulgaris,” World journal of pharmacy and pharmaceutical sciences, 4 (10), pp. 1988-2001, 2015.
[66] M. A. Hossain, K. A. AL-Raqmi, Z. H. AL-Mijizy, A. M. Weli, and Q. Al-Riyami, “Study of total phenol, flavonoids contents and phytochemical screening of various leaves crude extracts of locally grown Thymus vulgaris,” Asian Pac J Trop Biomed. 3(9), pp. 705-10, 2013.
[67] E. P. A. N’Goran, D. Bouatene, L. G. Bohoua, and M. Diomande, “Secondary metabolites and antioxidant properties of some herbs and spices (Thymus vulgaris, Capsicum annum and Allium sativum),” Global Journal of Advance Research. 4(1), pp. 8-15, 2017.
[68] M. M. Cowan, “Plant products as antimicrobial agents,” Clin Microbiol Rev. 12(4), pp. 564-82, 1999.
[69] M. C. Rota, A. Herrera, R. M. Martínez, J. A. Sotomayor, and M. J. Jordán, “Antimicrobial activity and chemical composition of Thymus vulgaris, Thymus zygis and Thymus hyemalis essential oils,” Food Control. 19(7), pp. 681–687, 2008.
[70] A. De Lisi, L. Tedone, V. Montesano, G. Sarli, and D. Negro, “Chemical characterisation of Thymus populations belonging from Southern Italy,” Food Chemistry. 125(4), pp. 1284–1286, 2011.
[71] A. G. Pirbalouti, M. Hashemi, and F. T. Ghahfarokhi, “Essential oil and chemical compositions of wild and cultivated Thymus daenensis Celak and Thymus vulgaris L,” Industrial Crops and Products. 48, pp. 43–48, 2013.
[72] O. Borugă, C. Jianu, C. Mişcă, I. Goleţ, A. T. Gruia, and F. G. Horhat, “Thymus vulgaris essential oil: chemical composition and antimicrobial activity,” J Med Life. 7 Spec No. 3, pp. 56-60, 2014.
[73] R. Kowalski, and J. Wawrzykowski, “Essential oils analysis in dried materials and granulates obtained from Thymus vulgaris L., Salvia officinalis L., Mentha piperita L. and Chamomilla recutita L,” Flavour and Fragrance Journal. 24(1), pp. 31–35, 2009.
[74] V. N. Daniel, I. E. Daniang, and N. D. Nimyel, “Phytochemical Analysis and Mineral Elements Composition of Ocimum Basilicum Obtained in JOS Metropolis, Plateau State, Nigeria,” International Journal of Engineering & Technology, 11(06), pp. 135-137, 2011.
[75] S. Sanni, P. A. Onyeyili, and F. S. Sanni, “Phytochemical Analysis, Elemental Determination and Some in vitro Antibacterial Activity of Ocimum basilicum L. Leaf Extracts,” Research Journal of Phytochemistry, 2, pp. 77-83, 2008.
[76] K. Issazadeh, M. R. M. K. Pahlaviani, A. Massiha, Ss. Bidarigh, M. Giahi, and P. Z. Muradov, “Analysis of the Phytochemical Contents and Anti microbial Activity of Ocimum basilicum L,” International Journal of Molecular and Clinical Microbiology, 1: 141-147, 2012.
[77] F. Fathiazad, A. Matlobi, A. Khorrami, S. Hamedeyazdan, H. Soraya, M. Hammami, N. Maleki-Dizaji, and A. Garjani, “Phytochemical screening and evaluation of cardioprotective activity of ethanolic extract of Ocimum basilicum L. (basil) against isoproterenol induced myocardial infarction in rats,” DARU Journal of Pharmaceutical Sciences. 20(1), pp. 87, 2012.
[78] R. S. Bhat, and S. Al-Daihan, “Phytochemical constituents and antibacterial activity of some green leafy vegetables,” Asian Pac J Trop Biomed. 4(3), pp. 189-193, 2014.
[79] S. N. Harsha, K. R. Anilakumar, and M. V. Mithila, “Antioxidant properties of Lactuca sativa leaf extract involved in the protection of biomolecules,” Biomed. Prev. Nutr. 3, pp. 367–373, 2014.
[80] N. Raval, “A Comprehensive review of Lepidium sativum linn, a traditional medicinal plant,” World journal of pharmacy and pharmaceutical sciences, 5(5), pp. 1593-1601, 2016.
[81] K. Chatoui, A. Talbaoui, M. Aneb, Y. Bakri, H. Harhar, and M. Tabyaoui, “Phytochemical Screening, Antioxidant and Antibacterial activity of Lepidium sativum seeds from Morocco,” J. Mater. Environ. Sci. 7 (8), pp. 2938-2946, 2016.
[82] Riazullah, H. Iqbal, and Badrullah, “Phytochemical and anti-microbial activity of Lepidium sativum L,” J. Med. Plants Res. 6(26), pp. 4358-4361, 2012.
[83] S. G. Berehe and A. D. Boru, “Phytochemical screening and antimicrobial activities of crude extract of Lepidium sativium seeds grown in Ethiopia,” Int J Pharm Sci Res 5(10), pp. 4182-87, 2014.
[84] A. Rizwan, M. Mohd, A. Firoz, and A. Aftab, “Phytochemical analysis and evaluation of anti-oxidant activity of methanolic extract of Lepidium sativum L. seeds,” Der Pharmacia Lettre, 7 (7), pp. 427-434, 2015.
[85] K. P. Svoboda, and J. B. Hampson, “Bioactivity of essential oils of selected temperate aromatic plants: antibacterial, antioxidant, anti inflammatory and other related pharmacological activities,” Plant Biology Department, SAC Auchincruive, Ayr, Scotland, UK, 1999.
Cite This Article
  • APA Style

    Bachir Raho Ghalem, Bellil Ali. (2017). Preliminary Phytochemical Screening of Five Commercial Essential Oils. World Journal of Applied Chemistry, 2(4), 145-151. https://doi.org/10.11648/j.wjac.20170204.16

    Copy | Download

    ACS Style

    Bachir Raho Ghalem; Bellil Ali. Preliminary Phytochemical Screening of Five Commercial Essential Oils. World J. Appl. Chem. 2017, 2(4), 145-151. doi: 10.11648/j.wjac.20170204.16

    Copy | Download

    AMA Style

    Bachir Raho Ghalem, Bellil Ali. Preliminary Phytochemical Screening of Five Commercial Essential Oils. World J Appl Chem. 2017;2(4):145-151. doi: 10.11648/j.wjac.20170204.16

    Copy | Download

  • @article{10.11648/j.wjac.20170204.16,
      author = {Bachir Raho Ghalem and Bellil Ali},
      title = {Preliminary Phytochemical Screening of Five Commercial Essential Oils},
      journal = {World Journal of Applied Chemistry},
      volume = {2},
      number = {4},
      pages = {145-151},
      doi = {10.11648/j.wjac.20170204.16},
      url = {https://doi.org/10.11648/j.wjac.20170204.16},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.wjac.20170204.16},
      abstract = {The discovery of natural resources from plants remains crucial for the development of new therapeutic remedies. The present study focused on the phytochemical study of commercial essential oils of certain medicinal plants: Thym (Thymus vulgaris), basil (Ocimum basilicum), sage (Salvia officinalis), Garden cress (Lepidium sativum) and lettuce (Lactuca sativa). The qualitative dosage of twelve secondary metabolites showed the presence of terpenoids and saponins in all tested oils while steroids, alkaloids, anthraquinones and phlobatannins were absent. The results obtained are encouraging and the secondary metabolites present in these oils were responsible for certain activities, hence the interest of their uses in traditional phytotherapy as well as the pharmacological and cosmetic field.},
     year = {2017}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Preliminary Phytochemical Screening of Five Commercial Essential Oils
    AU  - Bachir Raho Ghalem
    AU  - Bellil Ali
    Y1  - 2017/12/06
    PY  - 2017
    N1  - https://doi.org/10.11648/j.wjac.20170204.16
    DO  - 10.11648/j.wjac.20170204.16
    T2  - World Journal of Applied Chemistry
    JF  - World Journal of Applied Chemistry
    JO  - World Journal of Applied Chemistry
    SP  - 145
    EP  - 151
    PB  - Science Publishing Group
    SN  - 2637-5982
    UR  - https://doi.org/10.11648/j.wjac.20170204.16
    AB  - The discovery of natural resources from plants remains crucial for the development of new therapeutic remedies. The present study focused on the phytochemical study of commercial essential oils of certain medicinal plants: Thym (Thymus vulgaris), basil (Ocimum basilicum), sage (Salvia officinalis), Garden cress (Lepidium sativum) and lettuce (Lactuca sativa). The qualitative dosage of twelve secondary metabolites showed the presence of terpenoids and saponins in all tested oils while steroids, alkaloids, anthraquinones and phlobatannins were absent. The results obtained are encouraging and the secondary metabolites present in these oils were responsible for certain activities, hence the interest of their uses in traditional phytotherapy as well as the pharmacological and cosmetic field.
    VL  - 2
    IS  - 4
    ER  - 

    Copy | Download

Author Information
  • Process Engineering and Chemistry of Solutions Laboratory, University of Mascara, Mascara, Algeria

  • Process Engineering and Chemistry of Solutions Laboratory, University of Mascara, Mascara, Algeria

  • Sections