| Peer-Reviewed

Generating Functions for Generalized Mock Theta Functions

Published: 2 April 2013
Views:       Downloads:
Abstract

We consider generalized mock theta functions and give generating functions for the partial generalized mock theta functions.

Published in Pure and Applied Mathematics Journal (Volume 2, Issue 2)
DOI 10.11648/j.pamj.20130202.13
Page(s) 62-70
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2013. Published by Science Publishing Group

Keywords

Generating Function, Mock Theta Function and Hypergeometric Series

References
[1] R. P. Agarwal, Certain basic hypergeometric identities associated with mock theta functions, Quart. J. Math. (Oxford) 20 (1968), 121-128.
[2] G. E. Andrews, On basic hypergeometric series, mock theta functions and partitions (I), Quart. J. Math. (Oxford) (2) 17 (1966), 64-80.
[3] S. Ramanujan, Collected Papers, Cambridge University Press, 1972, reprinted Chelsea, New York, 1962.
[4] T. M. Rassias, S.N. Singh and H.M. Srivastava, Some q-generating functions associated with basic multiple hypergeometric series, Comp. and Math. with app. 27(1) (1994), 33-39.
[5] S. Saba, A study of a generalization of Ramanujan’s sixth order and third order mock theta functions, Appl. Math. 2(5), (2012), 157-165.
[6] S. Saba., Bilateral generalization of fifth and eighth order mock theta functions, J. Math. (IOSR) 4(5), (2013), 9-23.
[7] S. Saba, B. Srivastava, A generalization of fifth and seventh order mock theta functions and their partial sums, Global J. Sci. Frontier Reaserch,11(8), (2011), 82-89.
[8] A. K. Srivastava, On partial sum of mock theta functions of order three, Proc. India Acad. Sci. 107 (1997), 1-12.
[9] B. Srivastava, Ramanujan’s fifth order and tenth order mock theta functions- A generalization (Communicated).
[10] B. Srivastava, On a generalization of Ramanujan’s seventh order mock theta functions (Accepted).
[11] B. Srivastava, Ramanujan’s mock theta functions, Math. J. Okayama Univ. 47 (2005), 163-174.
[12] [12] G.N. Watson, The final problem: An account of the mock theta functions, J. London Math. Soc. 11 (1936) 55-80
Cite This Article
  • APA Style

    Sameena Saba. (2013). Generating Functions for Generalized Mock Theta Functions. Pure and Applied Mathematics Journal, 2(2), 62-70. https://doi.org/10.11648/j.pamj.20130202.13

    Copy | Download

    ACS Style

    Sameena Saba. Generating Functions for Generalized Mock Theta Functions. Pure Appl. Math. J. 2013, 2(2), 62-70. doi: 10.11648/j.pamj.20130202.13

    Copy | Download

    AMA Style

    Sameena Saba. Generating Functions for Generalized Mock Theta Functions. Pure Appl Math J. 2013;2(2):62-70. doi: 10.11648/j.pamj.20130202.13

    Copy | Download

  • @article{10.11648/j.pamj.20130202.13,
      author = {Sameena Saba},
      title = {Generating Functions for Generalized Mock Theta Functions},
      journal = {Pure and Applied Mathematics Journal},
      volume = {2},
      number = {2},
      pages = {62-70},
      doi = {10.11648/j.pamj.20130202.13},
      url = {https://doi.org/10.11648/j.pamj.20130202.13},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.pamj.20130202.13},
      abstract = {We consider generalized mock theta functions and give generating functions for the partial generalized mock theta functions.},
     year = {2013}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Generating Functions for Generalized Mock Theta Functions
    AU  - Sameena Saba
    Y1  - 2013/04/02
    PY  - 2013
    N1  - https://doi.org/10.11648/j.pamj.20130202.13
    DO  - 10.11648/j.pamj.20130202.13
    T2  - Pure and Applied Mathematics Journal
    JF  - Pure and Applied Mathematics Journal
    JO  - Pure and Applied Mathematics Journal
    SP  - 62
    EP  - 70
    PB  - Science Publishing Group
    SN  - 2326-9812
    UR  - https://doi.org/10.11648/j.pamj.20130202.13
    AB  - We consider generalized mock theta functions and give generating functions for the partial generalized mock theta functions.
    VL  - 2
    IS  - 2
    ER  - 

    Copy | Download

Author Information
  • Lucknow University, Lucknow, India

  • Sections