We consider generalized mock theta functions and give generating functions for the partial generalized mock theta functions.
Published in | Pure and Applied Mathematics Journal (Volume 2, Issue 2) |
DOI | 10.11648/j.pamj.20130202.13 |
Page(s) | 62-70 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2013. Published by Science Publishing Group |
Generating Function, Mock Theta Function and Hypergeometric Series
[1] | R. P. Agarwal, Certain basic hypergeometric identities associated with mock theta functions, Quart. J. Math. (Oxford) 20 (1968), 121-128. |
[2] | G. E. Andrews, On basic hypergeometric series, mock theta functions and partitions (I), Quart. J. Math. (Oxford) (2) 17 (1966), 64-80. |
[3] | S. Ramanujan, Collected Papers, Cambridge University Press, 1972, reprinted Chelsea, New York, 1962. |
[4] | T. M. Rassias, S.N. Singh and H.M. Srivastava, Some q-generating functions associated with basic multiple hypergeometric series, Comp. and Math. with app. 27(1) (1994), 33-39. |
[5] | S. Saba, A study of a generalization of Ramanujan’s sixth order and third order mock theta functions, Appl. Math. 2(5), (2012), 157-165. |
[6] | S. Saba., Bilateral generalization of fifth and eighth order mock theta functions, J. Math. (IOSR) 4(5), (2013), 9-23. |
[7] | S. Saba, B. Srivastava, A generalization of fifth and seventh order mock theta functions and their partial sums, Global J. Sci. Frontier Reaserch,11(8), (2011), 82-89. |
[8] | A. K. Srivastava, On partial sum of mock theta functions of order three, Proc. India Acad. Sci. 107 (1997), 1-12. |
[9] | B. Srivastava, Ramanujan’s fifth order and tenth order mock theta functions- A generalization (Communicated). |
[10] | B. Srivastava, On a generalization of Ramanujan’s seventh order mock theta functions (Accepted). |
[11] | B. Srivastava, Ramanujan’s mock theta functions, Math. J. Okayama Univ. 47 (2005), 163-174. |
[12] | [12] G.N. Watson, The final problem: An account of the mock theta functions, J. London Math. Soc. 11 (1936) 55-80 |
APA Style
Sameena Saba. (2013). Generating Functions for Generalized Mock Theta Functions. Pure and Applied Mathematics Journal, 2(2), 62-70. https://doi.org/10.11648/j.pamj.20130202.13
ACS Style
Sameena Saba. Generating Functions for Generalized Mock Theta Functions. Pure Appl. Math. J. 2013, 2(2), 62-70. doi: 10.11648/j.pamj.20130202.13
AMA Style
Sameena Saba. Generating Functions for Generalized Mock Theta Functions. Pure Appl Math J. 2013;2(2):62-70. doi: 10.11648/j.pamj.20130202.13
@article{10.11648/j.pamj.20130202.13, author = {Sameena Saba}, title = {Generating Functions for Generalized Mock Theta Functions}, journal = {Pure and Applied Mathematics Journal}, volume = {2}, number = {2}, pages = {62-70}, doi = {10.11648/j.pamj.20130202.13}, url = {https://doi.org/10.11648/j.pamj.20130202.13}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.pamj.20130202.13}, abstract = {We consider generalized mock theta functions and give generating functions for the partial generalized mock theta functions.}, year = {2013} }
TY - JOUR T1 - Generating Functions for Generalized Mock Theta Functions AU - Sameena Saba Y1 - 2013/04/02 PY - 2013 N1 - https://doi.org/10.11648/j.pamj.20130202.13 DO - 10.11648/j.pamj.20130202.13 T2 - Pure and Applied Mathematics Journal JF - Pure and Applied Mathematics Journal JO - Pure and Applied Mathematics Journal SP - 62 EP - 70 PB - Science Publishing Group SN - 2326-9812 UR - https://doi.org/10.11648/j.pamj.20130202.13 AB - We consider generalized mock theta functions and give generating functions for the partial generalized mock theta functions. VL - 2 IS - 2 ER -