Tiger Nuts (Cyperus esculentus L.), a member of the Cyperaceae family, is a plant cultivated in Niger for its tubers. The present study focuses on the molecular characterization of 10 Tiger Nuts (Cyperus esculentus L.) ecotypes from Niger. These Tiger Nuts ecotypes were collected in the Tiger Nuts producing regions of Niger (Dosso and Maradi). DNA extraction and genetic diversity analysis were carried out at the molecular biology laboratories of ICRISAT, Hyderabad, India. Codominant nuclear and polymorphic microsatellite (SSR) markers were used. The genetic diversity parameters calculated are: polymorphism rate (P) at the 95% threshold, allelic diversity (A), observed (Ho) and expected (He) heterozygosity rate and the panmixy deviation in a subpopulation (Fis) under the Hardy-Weinberg hypotheses. The results showed that genetic diversity ranged from 0.03 (StvCyR_181a and StvCyR_327ska) to 0.60 (StvCyR_93ska) with a mean of 0.28 and. For the Tiger Nuts producing regions, the average deficit in heterozygotes is highly significant, with a mean Fis of 0.415 (Fis, 1000 permutation test, P<0.001). A significant amount of variability (27%) from differentiation between the ecotypes studied was observed in the analysis of molecular variance. These results clearly show a genetic differentiation between the populations of the large, small and wild Tiger Nuts, grouping them into three distinct groups. The study also showed that the genetic structure of the Tiger Nuts is not linked to a particular geographical origin and that the molecular tests give us evidence of conserved variability in the Niger Tiger Nuts ecotypes.
Published in | International Journal of Genetics and Genomics (Volume 11, Issue 1) |
DOI | 10.11648/j.ijgg.20231101.13 |
Page(s) | 18-26 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2023. Published by Science Publishing Group |
Tiger Nuts (Cyperus esculentus L.), Ecotypes, Genetic Diversity, SSR Markers, Regions, Niger
[1] | Boukary. H. 2014. Caractérisation agro-morphologique et moléculaire des écotypes locaux d’oignon (Allium cepa L.) du Niger, Thèse de doctorat de l’Université Abdou Moumouni, Niamey. 111pp. |
[2] | Rabiou Abdou., 2014. Caractérisation de la diversité génétique de cultivars d’oignon (Alliumcepa L.) du Niger en vue de leur conservation in situ et de leur amélioration. Thèse de Doctorat. Université de Liège-Gembloux Agro-Bio Tech. 151 p. |
[3] | Idi-Saidou. S., 2014. Ressources génétiques du fonio [Digitaria exilis (kippist) stapf] du Niger: évaluations agro morphologique et génétique. Thèse de doctorat unique ès-Sciences Naturelles de l’Université Abdou Moumouni de Niamey. Spécialité: Génétique de populations et amélioration des plantes/Biostatistique. 137p. |
[4] | Dodet M., 2006. Diversité génétique et phénologie de Cyperus esculentus L. (Cyperaceae) pour une gestion intégrée de l’espace dans les cultures de Haute Lande. Thèse de doctorat, Université de Bourgogne. France. 226p. |
[5] | Weiner J., 2004. Allocation, plasticity and allometry in plants. Persp. Plant Ecol. Evol. Syst. 207-215. 9p. |
[6] | Kazan K., Manners J., Cameron D., 1993. Genetic variation in agronomically important species of Stylosanthes detemined using random amplified polymorphic DNA markers. Theor. Appl. Genet. 882-888. |
[7] | Chebbil. H., Pascual Villalobos- M. J., Cenis J. L., Correal. E. 1995. Caractérisation morphologique et moléculaire des espèces ligneuses du genre Medicago. 191-206. 16p. |
[8] | Douhovnikoff. V., Dodd R. S., 2003. Intra-clonal variation and a similarity threshold for identification of clones: application to Salix exigua using AFLP molecular markers. Theor. Appl Genet. 1307-1315. 9p. |
[9] | Bori., 2020. Caractérisation socio-économique, agromorphologique, physico-chimique et moléculaire du Souchet (Cyperus esculentus L.) du Niger. These de Doctorat. Université Abdou Moumouni de Niamey (Niger), 160p. |
[10] | Bousba. R., Djekoun A., Duraa S., Ykhlef. N. 2013. Caractérisation moléculaire et association marqueur ssr phénotype pour la tolérance au stress hydrique chez le blé dur (Triticum durum desf). European Scientific Journal. Edition vol. 9, No. 12: 1857-7881. 16p. |
[11] | Wright. S., 1978. Evolution and the genetics of populations. Variability within and among natural populations. USA: University of Chicago Press. |
[12] | Kondombo., 2010. Diversités agro-morphologique et génétique de variétés locales de sorgho [Sorghum bicolor (L.) Moench] du Burkina Faso. Eléments pour la valorisation des ressources génétiques locales. Thèse de Doctorat. L’université De Ouagadougou. 158p. |
[13] | Weir B., Cockerham C., 1984. Estimating F-statistics for the analysis of population structure. Evolution. 1358-1370. 14p. |
[14] | Peakall. R., Smouse. P., 2012. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 2537-2539. |
[15] | Perrier. X., Jacquemoud-Collet J., 2006. Darwin software. http://darwin.cirad.fr/darwin |
[16] | Pritchard. J., Falush. D., Stephens. M., 2002. Inference of population structure in recently admixed populations. American Journal of Human Genetics. 177-179. |
[17] | Falush. D. Stephens. M. Pritchard. J., 2003. Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics. 1567–1587. 11p. |
[18] | Evanno G., Regnaut S., Goudet J., 2005. Detecting the number of clusters of individuals using the software structure: a simulation study. Mol. Ecol. 2611–2620. |
[19] | Pascual. B., Maroto. J., 1993. Estudios de tipificacion y seleccion de Ifneas clonales cultivadas de Cyperus esculentus L. Actas II Congreso Iborico de Ciencias hortfcolas. 1015-1020. 7p. |
[20] | Abad. P., Pascual. B., Maroto J., Lopez-Galarza. S., Vicente. M., Alagarda. J., 1998. RAPD analysis of cultivated and wild yellow Tiger Nuts (Cyperus esculentus L.). Weed Sciences. 46: 318–321. 5p. |
[21] | Barret. S., 1982. Genetic variation in weeds. in R. Cha rudattan and H. L. Walker.eds. Biological Control of Weeds with Plant Pathogens. New York: J. Wiley. 25p. |
[22] | Holt. J. S., 1994. Genetic variation in life history traits in yellow Tiger Nuts (Cyperus esculentus) from California. Weed Sciences. 378–384. |
[23] | Adoukonou-Sagbadja. H., Antoine A., Paulin S., Rollande A., Geoffroy K., Corneille A., Clément A. 2014. Variabilité génétique des accessions d’igname introduites au Bénin à partir des îles du Sud-Pacifique. J. Appl. Biosci. 14p. |
[24] | Favoretto. P., Elizabeth Ann V., Paulo César T., 2011. Molecular characterization of potato cultivars using SSR markers. Horticultura Brasileira. 542-547. 6p. |
[25] | Horak. Michael J., Jodie S. Holt and Norman C. Ellstrand., 1987. Genetic Variation in Yellow Nutsedge (Cyperus esculentus). Weed Science, Vol. 35, No. 4. pp. 506-512. |
[26] | Hartl. D., Clark. A., 1997. Principles of population genetics. 3rd ed. Sinauer. Associates. |
[27] | Bedjaoui H., 2019. Etude de la diversité génétique de quelques accessions de palmier Dattier (Phoenix dactylifera L.) en Algérie moyennant les marqueurs de l’ADN de type SSR. Mémoire de Thèse. Université Mohamed Khider Biskra Faculté des sciences exactes et sciences de la nature et de la vie Département des Sciences Agronomiques. 184p. |
[28] | Foulley. J. Ollivier. L., 2006. Estimating allelic richness and its diversity. Livest. Sci. 101: 150-158. |
[29] | Tayyar. Rana I., Jamie H. T., Nguyen Jodie., Holt. S., 2003. Genetic and morphological analysis of two novel Tiger Nuts biotypes from California. Weed Science. 731-739p. 10p. |
APA Style
Bori Haoua, Idi Saidou Sani, Zangui Hamissou, Adam Toudou. (2023). Study of the Genetic Diversity of Tiger Nut (Cyperus esculentus) Ecotypes of Niger Using SSR Markers. International Journal of Genetics and Genomics, 11(1), 18-26. https://doi.org/10.11648/j.ijgg.20231101.13
ACS Style
Bori Haoua; Idi Saidou Sani; Zangui Hamissou; Adam Toudou. Study of the Genetic Diversity of Tiger Nut (Cyperus esculentus) Ecotypes of Niger Using SSR Markers. Int. J. Genet. Genomics 2023, 11(1), 18-26. doi: 10.11648/j.ijgg.20231101.13
AMA Style
Bori Haoua, Idi Saidou Sani, Zangui Hamissou, Adam Toudou. Study of the Genetic Diversity of Tiger Nut (Cyperus esculentus) Ecotypes of Niger Using SSR Markers. Int J Genet Genomics. 2023;11(1):18-26. doi: 10.11648/j.ijgg.20231101.13
@article{10.11648/j.ijgg.20231101.13, author = {Bori Haoua and Idi Saidou Sani and Zangui Hamissou and Adam Toudou}, title = {Study of the Genetic Diversity of Tiger Nut (Cyperus esculentus) Ecotypes of Niger Using SSR Markers}, journal = {International Journal of Genetics and Genomics}, volume = {11}, number = {1}, pages = {18-26}, doi = {10.11648/j.ijgg.20231101.13}, url = {https://doi.org/10.11648/j.ijgg.20231101.13}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ijgg.20231101.13}, abstract = {Tiger Nuts (Cyperus esculentus L.), a member of the Cyperaceae family, is a plant cultivated in Niger for its tubers. The present study focuses on the molecular characterization of 10 Tiger Nuts (Cyperus esculentus L.) ecotypes from Niger. These Tiger Nuts ecotypes were collected in the Tiger Nuts producing regions of Niger (Dosso and Maradi). DNA extraction and genetic diversity analysis were carried out at the molecular biology laboratories of ICRISAT, Hyderabad, India. Codominant nuclear and polymorphic microsatellite (SSR) markers were used. The genetic diversity parameters calculated are: polymorphism rate (P) at the 95% threshold, allelic diversity (A), observed (Ho) and expected (He) heterozygosity rate and the panmixy deviation in a subpopulation (Fis) under the Hardy-Weinberg hypotheses. The results showed that genetic diversity ranged from 0.03 (StvCyR_181a and StvCyR_327ska) to 0.60 (StvCyR_93ska) with a mean of 0.28 and. For the Tiger Nuts producing regions, the average deficit in heterozygotes is highly significant, with a mean Fis of 0.415 (Fis, 1000 permutation test, P<0.001). A significant amount of variability (27%) from differentiation between the ecotypes studied was observed in the analysis of molecular variance. These results clearly show a genetic differentiation between the populations of the large, small and wild Tiger Nuts, grouping them into three distinct groups. The study also showed that the genetic structure of the Tiger Nuts is not linked to a particular geographical origin and that the molecular tests give us evidence of conserved variability in the Niger Tiger Nuts ecotypes.}, year = {2023} }
TY - JOUR T1 - Study of the Genetic Diversity of Tiger Nut (Cyperus esculentus) Ecotypes of Niger Using SSR Markers AU - Bori Haoua AU - Idi Saidou Sani AU - Zangui Hamissou AU - Adam Toudou Y1 - 2023/03/09 PY - 2023 N1 - https://doi.org/10.11648/j.ijgg.20231101.13 DO - 10.11648/j.ijgg.20231101.13 T2 - International Journal of Genetics and Genomics JF - International Journal of Genetics and Genomics JO - International Journal of Genetics and Genomics SP - 18 EP - 26 PB - Science Publishing Group SN - 2376-7359 UR - https://doi.org/10.11648/j.ijgg.20231101.13 AB - Tiger Nuts (Cyperus esculentus L.), a member of the Cyperaceae family, is a plant cultivated in Niger for its tubers. The present study focuses on the molecular characterization of 10 Tiger Nuts (Cyperus esculentus L.) ecotypes from Niger. These Tiger Nuts ecotypes were collected in the Tiger Nuts producing regions of Niger (Dosso and Maradi). DNA extraction and genetic diversity analysis were carried out at the molecular biology laboratories of ICRISAT, Hyderabad, India. Codominant nuclear and polymorphic microsatellite (SSR) markers were used. The genetic diversity parameters calculated are: polymorphism rate (P) at the 95% threshold, allelic diversity (A), observed (Ho) and expected (He) heterozygosity rate and the panmixy deviation in a subpopulation (Fis) under the Hardy-Weinberg hypotheses. The results showed that genetic diversity ranged from 0.03 (StvCyR_181a and StvCyR_327ska) to 0.60 (StvCyR_93ska) with a mean of 0.28 and. For the Tiger Nuts producing regions, the average deficit in heterozygotes is highly significant, with a mean Fis of 0.415 (Fis, 1000 permutation test, P<0.001). A significant amount of variability (27%) from differentiation between the ecotypes studied was observed in the analysis of molecular variance. These results clearly show a genetic differentiation between the populations of the large, small and wild Tiger Nuts, grouping them into three distinct groups. The study also showed that the genetic structure of the Tiger Nuts is not linked to a particular geographical origin and that the molecular tests give us evidence of conserved variability in the Niger Tiger Nuts ecotypes. VL - 11 IS - 1 ER -