| Peer-Reviewed

Genetic Diversity and Demographic Evolution Using SRY Gene Polymorphism in Four Lineages of Ladoum Sheep in Senegal

Received: 29 January 2023     Accepted: 17 February 2023     Published: 28 February 2023
Views:       Downloads:
Abstract

Knowledge of spatial and temporal distribution of genetic diversity within and between populations is a crucial step for establishing strategies management of Animal genetic resources. This study aims to contribute to a better understanding of the genetic structure of local sheep breeds. Specifically, it will characterize the genetic diversity, differentiation and evolution of the SRY gene in four main lineages of Ladoum sheep in Senegal. After alignments and corrections, a total of 42 sequences were used for analysis of SRY genetic diversity and demographic evolution. The standard indices of genetic diversity, genetic differenciation, analyses of hierarchical molecular variance (AMOVA) and demographic tests were compute. Analysis of genetic variability parameters in the overall population revealed a low level of polymorphism in the SRY gene. Haplotypic diversity is much higher than the average nucleotide divergence between all pairs of haplotypes. The genetic distances, as well as the values of the genetic differentiation factor beetween lineages, reveal two genetic groups; one made up of the individuals of “Birahim” and the other, grouping the three lineages individuals. Differences in frequencies of essential proteins for a multitude of functions in the body are observed between the "Birahim" lineage and the others. The comparative trends in genetic diversity indices, the shape of the mismatch distribution curves, demographic indices and demogenetic tests show a rapid and recent expansion population from an ancestral small size. The Z-test analysis of selection revealed that SRY gene is under selection. Unlike “Batling” who is under negative selection, "Birahim" and "Gorgui" are under positive selection. This study has made a significant contribution to understanding the genetic structure of the Ladoum raised in Senegal.

Published in International Journal of Genetics and Genomics (Volume 11, Issue 1)
DOI 10.11648/j.ijgg.20231101.12
Page(s) 6-17
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2023. Published by Science Publishing Group

Keywords

Genetic, Diversity, Evolution, SRY, Polymorphism, Scheep, Ladoum

References
[1] Navè s, M. N., Alexandre, G. G., Mahieu, M., Gourdine, J. L., & Mandonnet, N. (2011, novembre). Les races animales locales: bases du développement innovant et durable de l'élevage aux Antilles. Carrefours de l'innovation agronomique, 16: 220-221.
[2] Gueye, C. (2020). Caractérisation génétique des moutons de race Ladoum en fonction des locations au Sénégal, Mémoire de Master en Biologie animale, Spécialité Génétique des populations, UCAD, Dakar, 30 p.
[3] Fall, A. K., Dieng, A. et Ndiaye, S. (2017). L’élevage des moutons de race Ladoum dans la commune de Thiès, Sénégal: caractéristiques socioéconomiques et techniques. Afrique Science, 13: (4) 140-150.
[4] Ndiaye, B., Diouf, M. N., Ciss, M., Wane, M., Diop, M. et Sembene, M. (2018). Morphologie et Pratiques d’élevage du mouton Peul-peul du Sénégal. Int. J. Adv. Res, 6 (5), 727-738.
[5] Toure, O. et Seck, S. M. (2005). Exploitations familiales et entreprises agricoles dans la zone des Niayes au Sénégal. International Institute for Environnement & Development, Dossier 6, 133: 20-26.
[6] Thior, Y. E. H. (2013). Analyse des stratégies endogènes d’alimentation en élevage ovin Ladoum dans la région de Thiès et propositions d’amélioration. Thèse de doctorat en médecine vétérinaire; Dakar; UCAD (EISMV), 98 p.
[7] Sy, D., Ndiaye, B., & Sembène, M. (2022). Contribution à la caractérisation génétique des ovins du Sénégal: cas des races Ladoum et Touabire. Afrique SCIENCE, 20 (3): 85-93.
[8] Paul, M. C. B. (2005). Sénégal: un système de santé animale en voie de privatisation. Thèse de Médecine vétérinaire: Ecole Nationale Vétérinaire d’Alfort, à la Faculté de Médecine de Créteil, 145 p.
[9] Ousseini, H. (2011). Analyse socio-économique des élevages du mouton Ladoum dans la commune de Thiès/Sénégal, Mémoire de Master en Productions Animales et Développement Durable, EISMV, Dakar, 35 p.
[10] Diack, F, Traore, E. H. Thior, E. H., Y., Gueye, C., Sembène, M., & Seck, M. (2021). Etude de quelques caractéristiques morphobiométriques de la race Ladoum du Sénégal. Int. J. Adv. Res., 9 (6), 315 – 323.
[11] Sadio, M. C. (2010). Caractérisation génétique des races ovines sahéliennes: étude du Ladoum et du Touabire. Mémoire de Master en Biologie animale, Spécialité Génétique des populations, UCAD, Dakar, 30 p.
[12] Sall Sada M. (2007). Caractérisation morpho-biométrique et système d’élevage du Mouton Ladoum. Mémoire d’Ingénieur des travaux d’élevage (ENCR) - Université de Thiès, 37 p.
[13] Hall, T. A. (1999, January). BioEdit: a user-friendly biological sequence alignment editor & analysis program for Windows 95/98/NT. In Nucleic acids symposium series, 41: 95-98).
[14] Thompson, J., Higgins, D. & Gibson, T. (1997). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties & weight matrix choice. Nucleic Acids Research, 22: 4673-4690.
[15] Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Molecular Biology & Evolution, 33 (7): 1870-1874.
[16] Nei, M., & Tajima, F. (1981). Polymorphisme de l'ADN détectable par les endonucléases de restriction. Génétique, 97 (1): 145-163.
[17] Nei M., (1987). Molecular evolutionary genetics, Columbia University Press, New York. NY, USA, 34 p.
[18] Librado JC, and Rozas J. (2009). DnaSP v5 software for comprehensive analysis of DAN polymorphism data. Bioinformatics, 25 (11): 1451-1452.
[19] Excoffier L. & Heckel G., (2006): Computer programs for population genetics data analysis: a survival guide. Nat Rev Genet. 7: 745–758.
[20] Nei M (1972). Genetic distance between populations. The American Naturalist, 106 (949): 283-292.
[21] Takezaki, N., & Nei, M. (1994). Inconsistency of the maximum parsimony method when the rate of nucleotide substitution is constant. Journal of molecular evolution, 39 (2): 210-218.
[22] Excoffier L., Smouse, P. E. & Quattro, J. M., (1992): Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131: 479-491.
[23] Li W. H., Wu C. I. & Luo C. C., (1985). A new method for estimating synonymous & nonsynonymous rates of nucleotide substitution considering the relative likelihood of nucleotide & codon changes. Molecular Biology & Evolution, 2: 150-174.
[24] Nei M. & Gojobori T., (1986): Simple methods for estimating the numbers of synonymous & nonsynonymous nucleotide substitutions. Molecular Biology & Evolution (3): 418-426.
[25] Kimura M., (1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution (16) 111-120.
[26] Yang Z. & Nielsen R., (2000). Estimating synonymous & nonsynonymous substitution rates under realistic evolutionary models. Molecular Biology & Evolution, 17: 32-43.
[27] Grant W. S. & Bowen B. W., (1998). Shallow Population Histories in Deep Evolutionnary Lineages of Marines Fishes: Insights from Sardines & Anchovies & Lessons for Conservation. The American Genetic Association, 89: 415-426.
[28] Avise J. C. (2000): Phylogeography: the history & formation of species. Harvard University Press, Cambridge, MA., 241 p.
[29] Nei, M., & Li, W. H. (1979). Mathematical model for studying genetic variation in terms of restriction endonucleases. Proceedings of the National Academy of Sciences, 76 (10), 5269-5273.
[30] Tajima F., (1989a). Statistical methods for testing the neutral mutation hypothesis by DNA polymorphism. Genetics, 123: 585-595.
[31] Tajima F., (1989b). The effect of change in population size on DNA polymorphism. Genetics, 123: 597-601.
[32] Fu, Y-X. (1997). Statistical tests of neutrality of mutations against population growth, hitchhiking & background selection. Genetics, 147: 915-925.
[33] Ramos-Onsins S. E. & Rozas J., (2002). Statistical properties of new neutrality tests against population growth, Mol. Biol. Evol. 19: 2092–2100.
[34] Hudson, R. R. (1990). Gene genealogies & the coalescent process. Oxford surveys in Evolutionary Biology, 7 (1): 44.
[35] Hanley, B., Dhondt, A., Bunting, E., Pokras, M., Hynes, K., Forzán, M., & Schuler, K. 2019. DensiPOPd Web Interactive: Software to investigate the density dependent impacts of lead in bald eagles in the Northeast United States [Software]. Cornell University Library eCommons Repository. https://doi.org/10.7298/6yb8-5c25.
[36] Sinclair, AH, Berta, P., Palmer, MS, Hawkins, JR, Griffiths, BL, Smith, MJ, & Goodfellow, PN (1990). Un gène de la région humaine déterminant le sexe code pour une protéine présentant une homologie avec un motif de liaison à l'ADN conservé. Nature, 346 (6281): 240-244.
[37] Niemi, M., Bläuer, A., Iso-Touru, T., Nyström, V., Harjula, J., Taavitsainen, JP, & Kantanen, J. (2013). ADN mitochondrial et diversité chromosomique Y dans les anciennes populations de moutons domestiques (Ovis aries) en Finlande: comparaison avec les races ovines contemporaines. Évolution de la Sélection Génétique, 45 (1): 1-14.
[38] Meadows J. R. S., Hawken R. J. & Kijas J. W. (2004). Nucleotide diversity on the ovine Y chromosome. Animal Genetics, 35: 379– 85.
[39] Hasanain, MH, Mahmoud, KGM, Ahmed, YF, Nawito, MF, EL-Menoufy, AA, & Ismail, ST. (2022). Enquête sur le polymorphisme du gène du facteur déterminant le sexe (SRY) et l'association des critères de sperme avec la fertilité du champ chez les taureaux Buffalo égyptiens. Journal égyptien de chimie, 65 (4): 1-2.
[40] Fu, Q., Zhang, M., Qin, W. S., Lu, Y. Q., Zheng, H. Y., Meng, B., & Lu, K. H. (2007). Cloning the swamp buffalo SRY gene for embryo sexing with multiplex-nested PCR. Theriogenology, 68 (9): 1211-1218.
[41] Ndiaye, B. (2019). L’élevage des petits ruminants dans le Ferlo: pratiques d’élevage, dynamique des troupeaux et caractérisation génétique du mouton Peul-peul du Sénégal, Thèse de doctorat en Biologie animale, Spécialité Génétique des populations, UCAD, Dakar, 123 P.
[42] Groeneveld, L. F., Lenstra, J. A., Eding, H., Toro, M. A., Scherf, B., Pilling, D., & Globaldiv C. (2010). Diversité génétique chez les animaux de ferme - une revue. Génétique animale, 41: 6-31.
[43] Zeder, M. A., (2012). The Broad Spectrum Revolution at 40: Resource diversity, intensification, and an alternative to optimal foraging explanations. Journal of Anthropological Archaeology, 31 (3): 241-264.
[44] Hughes, AL, & Nei, M. (1988). Le modèle de substitution de nucléotides au niveau des locus de classe I du complexe majeur d'histocompatibilité révèle une sélection sur dominante. Nature, 335 (6186): 167-170.
[45] Robelin, J., & Theriez, M. (1981). Fixation de protéines chez les ruminants: évolution en fonction du poids des animaux et variations selon la race, le sexe ou le niveau des apports alimentaires. Reproduction Nutrition Développement, 21 (2): 335-353.
[46] White, P. & Newgard, C. B. (2019). Branched-chain amino acids in disease. Science, 363: 582-583.
[47] Freeman, AR, Meghen, CM, MacHugh, DE, Loftus, RT, Achukwi, MD, Bado, A.,... & Bradley, DG. (2004). Mélange et diversité dans les populations bovines d'Afrique de l'Ouest. Écologie moléculaire, 13 (11): 3477-3487.
[48] Bessa I, Pinheiro I, Matola M, Djama K, Rocha A, Alexandrino P. (2009). Genetic diversity & relationships among indigenous Mozambican cattle breeds. S. Afr. J. Anim. Sci. 39 (1).
[49] Ema, PN, Manjeli, Y., Meutchieyié, F., Keambou, C., Wanjala, B., Desta, AF, & Djikeng, A. (2014). Genetic diversity of four native Cameroonian cattle using microsatellite markers. Journal of Livestock Science, 5, 9-17.
[50] Hartl, D. L., Clark, A. G., & Clark, A. G. (1997). Principles of population genetics. Sunderland: Sinauer Associates, 116: 112-142.
[51] Balloux, F., & Lugon-Moulin, N. (2002). The estimation of population differentiation with microsatellite markers. Molecular ecology, 11 (2), 155-165.
[52] Boujenane, I., & Ouragh, L. (2010). Analyse génétique des bovins indigènes marocains. Vivre. Rés. Rural. Dev., 22: 154-151.
[53] Chaudhari, S., Koivunen, V., & Poor, H. V. (2009). Autocorrelation-based decentralized sequential detection of OFDM signals in cognitive radios. IEEE Transactions on Signal Processing, 57 (7): 2690-2700.
Cite This Article
  • APA Style

    Sembene Pape Madiop, Mbaye Fatimata, Sembene Pape Mbacke. (2023). Genetic Diversity and Demographic Evolution Using SRY Gene Polymorphism in Four Lineages of Ladoum Sheep in Senegal. International Journal of Genetics and Genomics, 11(1), 6-17. https://doi.org/10.11648/j.ijgg.20231101.12

    Copy | Download

    ACS Style

    Sembene Pape Madiop; Mbaye Fatimata; Sembene Pape Mbacke. Genetic Diversity and Demographic Evolution Using SRY Gene Polymorphism in Four Lineages of Ladoum Sheep in Senegal. Int. J. Genet. Genomics 2023, 11(1), 6-17. doi: 10.11648/j.ijgg.20231101.12

    Copy | Download

    AMA Style

    Sembene Pape Madiop, Mbaye Fatimata, Sembene Pape Mbacke. Genetic Diversity and Demographic Evolution Using SRY Gene Polymorphism in Four Lineages of Ladoum Sheep in Senegal. Int J Genet Genomics. 2023;11(1):6-17. doi: 10.11648/j.ijgg.20231101.12

    Copy | Download

  • @article{10.11648/j.ijgg.20231101.12,
      author = {Sembene Pape Madiop and Mbaye Fatimata and Sembene Pape Mbacke},
      title = {Genetic Diversity and Demographic Evolution Using SRY Gene Polymorphism in Four Lineages of Ladoum Sheep in Senegal},
      journal = {International Journal of Genetics and Genomics},
      volume = {11},
      number = {1},
      pages = {6-17},
      doi = {10.11648/j.ijgg.20231101.12},
      url = {https://doi.org/10.11648/j.ijgg.20231101.12},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ijgg.20231101.12},
      abstract = {Knowledge of spatial and temporal distribution of genetic diversity within and between populations is a crucial step for establishing strategies management of Animal genetic resources. This study aims to contribute to a better understanding of the genetic structure of local sheep breeds. Specifically, it will characterize the genetic diversity, differentiation and evolution of the SRY gene in four main lineages of Ladoum sheep in Senegal. After alignments and corrections, a total of 42 sequences were used for analysis of SRY genetic diversity and demographic evolution. The standard indices of genetic diversity, genetic differenciation, analyses of hierarchical molecular variance (AMOVA) and demographic tests were compute. Analysis of genetic variability parameters in the overall population revealed a low level of polymorphism in the SRY gene. Haplotypic diversity is much higher than the average nucleotide divergence between all pairs of haplotypes. The genetic distances, as well as the values of the genetic differentiation factor beetween lineages, reveal two genetic groups; one made up of the individuals of “Birahim” and the other, grouping the three lineages individuals. Differences in frequencies of essential proteins for a multitude of functions in the body are observed between the "Birahim" lineage and the others. The comparative trends in genetic diversity indices, the shape of the mismatch distribution curves, demographic indices and demogenetic tests show a rapid and recent expansion population from an ancestral small size. The Z-test analysis of selection revealed that SRY gene is under selection. Unlike “Batling” who is under negative selection, "Birahim" and "Gorgui" are under positive selection. This study has made a significant contribution to understanding the genetic structure of the Ladoum raised in Senegal.},
     year = {2023}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Genetic Diversity and Demographic Evolution Using SRY Gene Polymorphism in Four Lineages of Ladoum Sheep in Senegal
    AU  - Sembene Pape Madiop
    AU  - Mbaye Fatimata
    AU  - Sembene Pape Mbacke
    Y1  - 2023/02/28
    PY  - 2023
    N1  - https://doi.org/10.11648/j.ijgg.20231101.12
    DO  - 10.11648/j.ijgg.20231101.12
    T2  - International Journal of Genetics and Genomics
    JF  - International Journal of Genetics and Genomics
    JO  - International Journal of Genetics and Genomics
    SP  - 6
    EP  - 17
    PB  - Science Publishing Group
    SN  - 2376-7359
    UR  - https://doi.org/10.11648/j.ijgg.20231101.12
    AB  - Knowledge of spatial and temporal distribution of genetic diversity within and between populations is a crucial step for establishing strategies management of Animal genetic resources. This study aims to contribute to a better understanding of the genetic structure of local sheep breeds. Specifically, it will characterize the genetic diversity, differentiation and evolution of the SRY gene in four main lineages of Ladoum sheep in Senegal. After alignments and corrections, a total of 42 sequences were used for analysis of SRY genetic diversity and demographic evolution. The standard indices of genetic diversity, genetic differenciation, analyses of hierarchical molecular variance (AMOVA) and demographic tests were compute. Analysis of genetic variability parameters in the overall population revealed a low level of polymorphism in the SRY gene. Haplotypic diversity is much higher than the average nucleotide divergence between all pairs of haplotypes. The genetic distances, as well as the values of the genetic differentiation factor beetween lineages, reveal two genetic groups; one made up of the individuals of “Birahim” and the other, grouping the three lineages individuals. Differences in frequencies of essential proteins for a multitude of functions in the body are observed between the "Birahim" lineage and the others. The comparative trends in genetic diversity indices, the shape of the mismatch distribution curves, demographic indices and demogenetic tests show a rapid and recent expansion population from an ancestral small size. The Z-test analysis of selection revealed that SRY gene is under selection. Unlike “Batling” who is under negative selection, "Birahim" and "Gorgui" are under positive selection. This study has made a significant contribution to understanding the genetic structure of the Ladoum raised in Senegal.
    VL  - 11
    IS  - 1
    ER  - 

    Copy | Download

Author Information
  • Genomic Laboratory, Department of Animal Biology, Cheikh Anta Diop University, Dakar, Senegal

  • Genomic Laboratory, Department of Animal Biology, Cheikh Anta Diop University, Dakar, Senegal

  • Genomic Laboratory, Department of Animal Biology, Cheikh Anta Diop University, Dakar, Senegal

  • Sections