This paper describes a motor-converter systemic design methodology improving electric vehicles performances (EVP) such as: autonomy, power to weight ratio and ripple torque. This methodology takes in account of several physical, thermal and technological constraints. It rests on the coupling of a parameterized analytical model of the all motor-converter to a software based on genetic algorithms method in order to optimize parameters influencing the EVP on circulation mission in respecting several physical and technological constraints of electric vehicles. The analytical model developed covering several motor configurations is validated by the finite elements and experimental methods.
Published in | International Journal of Electrical Components and Energy Conversion (Volume 1, Issue 1) |
DOI | 10.11648/j.ijecec.20150101.11 |
Page(s) | 1-15 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2015. Published by Science Publishing Group |
Design, Analytic Method, Finite Element, Optimization, Electric Motor
[1] | Chaithongsuk, S., Nahid-Mobarakeh, B., Caron, J., Takorabet, N., & Meibody-Tabar, F. : Optimal design of permanent magnet motors to improve field-weakening performances in variable speed drives. Industrial Electronics, IEEE Transactions on, vol 59 no 6, p. 2484-2494, 2012. |
[2] | Rahman, M. A., Osheiba, A. M., Kurihara, K., Jabbar, M. A., Ping, H. W., Wang, K., & Zubayer, H. M. : Advances on single-phase line-start high efficiency interior permanent magnet motors. Industrial Electronics, IEEE Transactions on, vol 59 no 3, p. 1333-1345, 2012. |
[3] | C.C Hwang, J.J. Chang : Design and analysis of a high power density and high efficiency permanent magnet DC motor, Journal of Magnetism and Magnetic Materials, Volume 209, Number 1, February 2000, pp. 234-236(3)-Publisher: Elsevier. |
[4] | MI. Chunting CHRIS : Analytical design of permanent-magnet traction-drive motors" Magnetics, IEEE Transactions on Volume 42, Issue 7, July 2006 Page(s):1861 - 1866 Digital Object Dentifier 10.1109/TMAG.2006.874511. |
[5] | S.TOUNSI, R.NÉJI, F.SELLAMI : Conception d'un actionneur à aimants permanents pour véhicules électriques, Revue Internationale de Génie Électrique volume 9/6 2006 - pp.693-718. |
[6] | Sid Ali. RANDI : Conception systématique de chaînes de traction synchrones pour véhicule électrique à large gamme de vitesse. Thèse de Doctorat 2003, Institut National Polytechnique de Toulouse, UMRCNRS N° 5828. |
[7] | C. PERTUZA : Contribution à la définition de moteurs à aimants permanents pour un véhicule électrique routier. Thèse de docteur de l’Institut National Polytechnique de Toulouse, Février 1996. |
[8] | S. TOUNSI, R. NEJI and F. SELLAMI: Mathematical model of the electric vehicle autonomy. ICEM2006 (16th International Conference on Electrical Machines), 2-5 September 2006 Chania-Greece, CD: PTM4-1. |
[9] | R. NEJI, S. TOUNSI, F. SELLAMI: Contribution to the definition of a permanent magnet motor with reduced production cost for the electrical vehicle propulsion. Journal European Transactions on Electrical Power (ETEP), Volume 16, issue 4, 2006, pp. 437-460. |
[10] | P. BASTIANI : Stratégies de commande minimisant les pertes d’un ensemble convertisseur machine alternative : application à la traction électrique. Thèse INSA 01 ISAL 0007, 2001. |
[11] | G. Henriot : Traité théorique et pratique des engrenages : théorie et technologie 1. tome 1 Edition Dunod 1952. |
[12] | D-H. Cho, J-K. Kim, H-K. Jung and C-G. Lee: Optimal design of permanent-magnet motor using autotuning Niching Genetic Algorithm, IEEE Transactions on Magnetics, Vol. 39, No. 3, May 2003. |
[13] | Islam, M. S., Islam, R., & Sebastian, T. : Experimental verification of design techniques of permanent-magnet synchronous motors for low-torque-ripple applications. Industry Applications, IEEE Transactions on, vol 47 no 1, p. 88-95, 2011. |
[14] | Parasiliti, F., Villani, M., Lucidi, S., & Rinaldi, F. : Finite-element-based multiobjective design optimization procedure of interior permanent magnet synchronous motors for wide constant-power region operation. Industrial Electronics, IEEE Transactions on, vol 59 no 6, p. 2503-2514, 2012. |
[15] | Mahmoudi, A., Kahourzade, S., Rahim, N. A., & Ping, H. W. : Improvement to performance of solid-rotor-ringed line-start axial-flux permanent-magnet motor. Progress In Electromagnetics Research, 124, p. 383-404, 2012. |
[16] | Duan, Y., & Ionel, D. M. : A review of recent developments in electrical machine design optimization methods with a permanent-magnet synchronous motor benchmark study. Industry Applications, IEEE Transactions on, vol 49 no 3, p. 1268-1275, 2013. |
[17] | Liu, G., Yang, J., Zhao, W., Ji, J., Chen, Q., & Gong, W. : Design and analysis of a new fault-tolerant permanent-magnet vernier machine for electric vehicles. Magnetics, IEEE Transactions on, vol 48 no 11, p. 4176-4179, 2012. |
[18] | Lee, S., Kim, K., Cho, S., Jang, J., Lee, T., & Hong, J. : Optimal design of interior permanent magnet synchronous motor considering the manufacturing tolerances using Taguchi robust design. Electric Power Applications, IET, vol 8 no 1, 23-28, 2014. |
APA Style
Souhir Tounsi. (2015). Systemic Design and Optimization Improving Performances of Permanent Magnet Motors. International Journal of Electrical Components and Energy Conversion, 1(1), 1-15. https://doi.org/10.11648/j.ijecec.20150101.11
ACS Style
Souhir Tounsi. Systemic Design and Optimization Improving Performances of Permanent Magnet Motors. Int. J. Electr. Compon. Energy Convers. 2015, 1(1), 1-15. doi: 10.11648/j.ijecec.20150101.11
@article{10.11648/j.ijecec.20150101.11, author = {Souhir Tounsi}, title = {Systemic Design and Optimization Improving Performances of Permanent Magnet Motors}, journal = {International Journal of Electrical Components and Energy Conversion}, volume = {1}, number = {1}, pages = {1-15}, doi = {10.11648/j.ijecec.20150101.11}, url = {https://doi.org/10.11648/j.ijecec.20150101.11}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ijecec.20150101.11}, abstract = {This paper describes a motor-converter systemic design methodology improving electric vehicles performances (EVP) such as: autonomy, power to weight ratio and ripple torque. This methodology takes in account of several physical, thermal and technological constraints. It rests on the coupling of a parameterized analytical model of the all motor-converter to a software based on genetic algorithms method in order to optimize parameters influencing the EVP on circulation mission in respecting several physical and technological constraints of electric vehicles. The analytical model developed covering several motor configurations is validated by the finite elements and experimental methods.}, year = {2015} }
TY - JOUR T1 - Systemic Design and Optimization Improving Performances of Permanent Magnet Motors AU - Souhir Tounsi Y1 - 2015/04/03 PY - 2015 N1 - https://doi.org/10.11648/j.ijecec.20150101.11 DO - 10.11648/j.ijecec.20150101.11 T2 - International Journal of Electrical Components and Energy Conversion JF - International Journal of Electrical Components and Energy Conversion JO - International Journal of Electrical Components and Energy Conversion SP - 1 EP - 15 PB - Science Publishing Group SN - 2469-8059 UR - https://doi.org/10.11648/j.ijecec.20150101.11 AB - This paper describes a motor-converter systemic design methodology improving electric vehicles performances (EVP) such as: autonomy, power to weight ratio and ripple torque. This methodology takes in account of several physical, thermal and technological constraints. It rests on the coupling of a parameterized analytical model of the all motor-converter to a software based on genetic algorithms method in order to optimize parameters influencing the EVP on circulation mission in respecting several physical and technological constraints of electric vehicles. The analytical model developed covering several motor configurations is validated by the finite elements and experimental methods. VL - 1 IS - 1 ER -