| Peer-Reviewed

Selenium in the Soil-Plant Environment: A Review

Received: 2 December 2016     Accepted: 22 December 2016     Published: 12 January 2017
Views:       Downloads:
Abstract

Selenium (Se) exhibits a “double-edged” behavior in animal and human nutrition. It is a micronutrient required in low concentrations by animals and humans, but toxic at high concentrations. Selenium deficiency has been associated with cancer and other health problems. Selenium requirements are commonly met through soils and plants such as wheat, rice, vegetables and maize in many countries. Selenium concentration in the soil generally ranges from 0.01-2.0 mg kg-1 but seleniferous soils usually contain more than 5 mg kg-1. Seleniferous soils have been reported in Ireland, China, India and USA. Weathering of parent rocks and atmospheric deposition of volcanic plumes are natural processes increasing Se levels in the environment. Anthropogenic sources of Se include irrigation, fertilizer use, sewage sludge and farmyard manure applications, coal combustion and crude oil processing, mining, smelting and waste incineration. Mobility of Se in the soil-plant system largely depends on its speciation and bioavailability in soil which is controlled by pH and redox potential. Plant uptake of Se varies with plant species and Se bioavailability in the soil. The uptake, translocation, transformation, metabolism, and functions of Se within the plant are further discussed in the paper. The release of Se in soils and subsequent uptake by plants has implications for meeting Se requirements in animals and humans.

Published in International Journal of Applied Agricultural Sciences (Volume 3, Issue 1)
DOI 10.11648/j.ijaas.20170301.11
Page(s) 1-18
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2017. Published by Science Publishing Group

Keywords

Selenium, Speciation, Metabolism, Transformations, Antioxidative Activity, Plant Uptake

References
[1] Combs GF. 2001. Selenium in global food systems. Br J Nutr 85:517–47.
[2] Hartikainen, H. 2005. Biogeochemistry of selenium and its impact on food chain quality and human health. J Trace Elements Med. Biol. 18 (4): 309-318. DOI: 10.1016/j.jtemb.2005.02.009.
[3] Foster, H. D. 2003. Why HIV-1 has diffused so much more rapidly in Sub-Saharan Africa than in North America. Med Hypotheses 60 (4): 611–4.
[4] Zhang, H. H., Wu, Z. F., Yang, C. L., Xia, B., Xu, D. R., & Yuan, H. X., 2008. Spatial distributions and potential risk analysis of total soil selenium in Guangdong province, China. J. Environ.Qual. 37: 780–787.
[5] Yamada, H., Kamada, A., Usuki, M., Yanai, J., 2009. Total selenium content of agricultural soils in Japan. Soil Sci. Plant Nutr. 55: 616–622.
[6] Fordyce, F. M., Brereton, N., Hughes, J., Luo,W., & Lewis, J., 2010. An initial study to assess the use of geological parent materials to predict the Se concentration in overlying soils and in five staple foodstuffs produced in them in Scotland. Sci. Total Environ. 408: 5295–5305.
[7] Pérez-Sirvent, C., Sánchez-Martínez, M. J., García-Lorenzo, M. L., Molina, J., Tudela, M. L., Mantilla, W., & Bech, J., 2010. Selenium content in soils from Murcia region (SE, Spain). J. Geochem. Explor. 107: 100–109.
[8] Boyd, R., 2011. Selenium stories. Nat. Chem. 3, 570.
[9] Fernández-Martínez, A., & Charlet, L., 2009. Selenium environmental cycling and bioavailability: A structural chemist point of view. Rev. Environ. Sci. Biotechnol. 8: 81–110.
[10] Lyons, G., Judson, G., Ortiz-Monasterio, I., Genc, Y., Stangoulis, J., & Graham, R. 2005. Selenium in Australia: Selenium status and biofortification of wheat for better health. J Trace Elements Med. Biol. 19: 75–82.
[11] Gabos, M. B., Alleoni, L. R., & Abreu, C. A. 2014. Background levels of selenium in some selected Brazilian tropical soils. J Geochem. Explor. 145: 35-39. DOI: 10.1016/j.gexplo.2014.05.007.
[12] Navarro-Alarcon, M., & Cabrera-Vique, C. 2008. Selenium in food and the human body: A review. Sci. Total Environ. 400: 115–141.
[13] Ferreira, K. S., Garcia, J. C., Baker, R., & Dean, C. P. 2002. The concentrations of seal food consumed in nio ˆ Brazil. Revista Panamericana de Salud Publica 11: 172-177.
[14] Boldrin, P. F., Faquin, V., Ramos, S. J., Boldrin, K. V., Ávila, F. W., & Guilherme, L. R.. 2013. Soil and foliar application of selenium in rice biofortification. J Food Composition and Analysis, 31 (2): 238-244. DOI: 10.1016/j.jfca.2013.06.002.
[15] Zhang, M., Tang, S. H., Huang, X., Zhang, F. B., Pang, Y. W., Huang, Q. Y., & Yi, Q. 2014. Selenium uptake, dynamic changes in selenium content and its influence on photosynthesis and chlorophyll fluorescence in rice (Oryza sativa L.). Environ. Exp. Botany, 107: 39–45.
[16] Jiang, Y., Zeng, Z., Bu, Y., Ren, C., Li, J., Han1, J., Tao, C., Zhang, K., Wang, X., Lu, G., Li, Y., & Hu, Y. 2015. Effects of selenium fertilizer on grain yield, Se uptakeand distribution in common buckwheat (Fagopyrum esculentum Moench). Plant Soil Environ. 61 (8): 371–377. doi: 10.17221/284/2015-PSE.
[17] Beladel B., Nedjimi B., Mansouri A., Tahtat D., Belamri M., Tchanchane A., Khelfaoui F., & Benamar, M. 2013. Selenium content in wheat and estimation of the selenium daily intake in different regions of Algeria. Applied Radiation and Isotopes 71: 7–10.
[18] De Temmerman, L., Waegeneers, N., Thiry, C., Du Laing, G., Tack, F., &Ruttens, A. 2014. Selenium content of Belgian cultivated soils and its uptake by field crops and vegetables. Sci. Total Environ. 468-469, 77-82. DOI: 10.1016/j.scitotenv.2013.08.016.
[19] Haudin, C. S., Renault, P., Leclerc-Cessac, E., & Staunton, S. 2007. Effect of selenite additions on microbial activity and dynamics in three soils incubated under aerobic conditions. Soil Biol. Biochem., 39 (10): 2670-2674. DOI: 10.1016/j.soilbio.2007.04.020.
[20] Funes-Collado V., Morell-Garcia, A., Rubio, R., & Lopez-Sanchez, J. 2013. Study of selenocompounds from selenium-enriched culture of edible Sprouts. Food Chem. 141: 3738–3743.
[21] Zhang, X., Deng, W., & Yang, X. 2002. The background concentrations of 13 soil trace elements and their relationships to parent materials and vegetation in Xizang (Tibet), China. JAsian Earth Sci. 21: 167–174.
[22] Li, Y., Wang, W., Luo, K., & Li, H. 2008a. Environmental behaviors of selenium in soil of typical selenosis area, China. J Environ. Sci., 20 (7): 859-864. DOI: 10.1016/S1001-0742(08)62138-5.
[23] Fordyce, F., Guangdi, Z., Green, K., & Xinping, L. 2000. Soil, grain and water chemistry in relation to human selenium-responsive diseases in Enshi District, China. Appl. Geochem. 15, 117-132.
[24] Shand, C. A., Eriksson, J., Dahlin, A. S., & Lumsdon, D. G. 2012. Selenium concentrations in national inventory soils from Scotland and Sweden and their relationship with geochemical factors. J. Geochem. Explor., 121: 4-14. DOI: 10.1016/j.gexplo.2012.06.001.
[25] Malisa, E. P., 2001. The behavior of selenium in geological processes. Environ. Geochem. Health 23: 137-158.
[26] Mayland, H. F., James, L. F., Panter, K. E., & Sonderegger, J. L., 1989. Selenium in seleniferous environments. Soil Sci. Soc. Am. J. 23: 15-50.
[27] Statwick, J., & Sher, A. A.. 2017. Selenium in soils of western Colorado. J. Arid Environ., 137, 1-6. DOI: 10.1016/j.jaridenv.2016.10.006.
[28] Park, M., Chon, H. T.,& Marton, L. 2010. Mobility and accumulation of selenium and its relationship with other heavy metals in the system rocks/soils-crops in areas covered by black shale in Korea. J Geochem. Explor., 107 (2): 161-168. DOI: 10.1016/j.gexplo.2010.09.003.
[29] Zhu, J., Zuo, W., Liang, X., Li, S., & Zheng, B. 2004. Occurrence of native selenium in Yutangba and its environmental implications. Appl. Geochem. 19: 461–467.
[30] Wen, H., & Carignan, J., 2007. Reviews on atmospheric selenium: Emissions, speciation and fate. Atmospheric Environ. 41 (34): 7151–7165.
[31] Mosher, B. W., & Duce, R. A., 1987. A global atmospheric selenium budget. J. Geophysical Res. 92 (D11): 13289–13298.
[32] Allen, A. G., Baxter, P. J., & Ottley, C. J., 2000. Gas and particle emissions from Soufrière Hills Volcano, Montserrat, West Indies: Characterization and health hazard assessment. Bull. Volcanol. 62 (1), 8–19.
[33] Monahan-Pendergast, M., Przybylek, M., Lindblad, M., & Wilcox, J., 2008. Atmospheric Environ. 42 (10): 2349–2357.
[34] Calabrese, S., 2009. Atmospheric deposition of volcanogenic major and trace elements on Mt. Etna, Sicily. PhD Dissertation, University of Palermo, Italy.
[35] Floor, G. H., Román-Ross, G. 2012. Selenium in volcanic environments: A review. Appl. Geochem., 27 (3): 517-531. DOI: 10.1016/j.apgeochem.2011.11.010.
[36] Nakamaru, Y., Tagami, K., & Uchida, S., 2005. Distribution coefficient of selenium in Japanese agricultural soils. Chemosphere 58 (10): 1347–1354.
[37] Shoji, S., Nanzyo, M., & Dahlgren, R. A., 1993. Volcanic Ash Soils: Genesis, Properties, and Utilization. Elsevier Sci. Pub., Amsterdam, The Netherlands. 288 pp.
[38] Bellomo, S., Aiuppa, A., D'Alessandro, W., & Parello, F., 2007. Environmental impact of magmatic fluorine emission in the Mt. Etna area. J Volcanol. Geothermal Res. 165 (1–2): 87–101.
[39] Floor, G. H., Calabrese, S., Román-Ross, G., D́Alessandro, W., & Aiuppa, A. 2011. Selenium mobilization in soils due to volcanic derived acid rain: An example from Mt Etna volcano, Sicily. Chem. Geol., 289 (3-4): 235-244. DOI: 10.1016/j.chemgeo.2011.08.004.
[40] Floor, G., Marguí, E., Hidalgo, M., Queralt, I., Kregsamer, P. Streli, C., & Román-Ross, G. 2013. Study of selenium sorption processes in volcanic ash using Total Reflection X-ray Fluorescence (TXRF). Chem. Geol. 352: 19–26.
[41] Deverel, S. J., Fio, J. L., & Dubrovsky, N. M. 1994. Distribution and mobility ofselenium in groundwater in the western San Joaquin Valley of California. In: Frankenberger WT, Benson S, editors. Selenium in the environments. New York: Marcel Dekker, pp. 157–83.
[42] Lin, Z., Cervinka, V., Pickering, I., Zayed, A., & Terry, N. 2002. Managing selenium-contaminated agricultural drainage water by the integrated on-farm drainage management system: role of selenium volatilization. Water Res. 36: 3150–3160.
[43] Patterson, M. M., Paige, G. B., & Reddy, K. J., 2010. Selenium in surface and irrigation water in the Kendrick irrigation district, Wyoming. Environ. Monit. Assess. 171: 267–280.
[44] Mast, M. A., Mills, T. J., Paschke, S. S., Keith, G., & Linard, J. I., 2014. Mobilization of selenium from the Mancos Shale and associated soils in the lower Uncompahgre River Basin, Colorado. Appl. Geochem. 48: 16–27.
[45] Bailey, R. T., Hunter, W. J., & Gates, T. K. 2012. The influence of nitrate on selenium in irrigated agricultural groundwater systems. J. Environ. Qual, 41 (3): 783-792.
[46] Dhillon, K., & Dhillon, S. 2003. Quality of underground water and its contribution towards selenium enrichment of the soil–plant system for a seleniferous region of northwest India. J. Hydrol. 272: 120–130.
[47] Bajaj, M., Eiche, E., Neumann, T., Winter, J., &Gallert, C. 2011. Hazardous concentrations of selenium in soil and groundwater in North-West India. J. Haz Mater. 189 (3): 640-646.
[48] Wang, Q., Zhang, J., Zhao, B., Xin, X., Deng, X., & Zhang, H. 2016. Influence of Long-Term Fertilization on Selenium Accumulation in Soil and Uptake by Crops. Pedosphere, 26 (1): 120-129. DOI: 10.1016/S1002-0160(15)60028-5.
[49] Kratz, S., Schick, J., & Schnug, E. 2016. Trace elements in rock phosphates and P containing mineral and organo-mineral fertilizers sold in Germany. Sci Total Environ. 542: 1013–1019.
[50] Singh, M., Narwal, R. P., Singh, N., & Ruhal, D. S. 1996. Effect of phosphatic fertilizers on selenium accumulation in Typic Ustochrept soil. Annuals Biol., 12 (1): 31-33.
[51] FAO. 2004. Use of Phosphate Rock for Sustainable Agriculture. InFAO Fertilizer and Plant Nutrition Bulletin. Edited byF. Zapata and R. N. Roy. A Joint Publication of the FAO Land and Water Development Division and International Atomic Energy Agency (IAEA).
[52] Cappon, C. J.1991. Sewage sludge as a source of environmental selenium. Sci Total Environ. 100 (C): 177-205. DOI: 10.1016/0048-9697(91)90378-R.
[53] Furr, A. K., Parkinson, T., Bache, C., Gutenmann, W., Palkala, I., & Lisk, D. 1980. Multielement absorption by crops grown on soils amended with municipal sludge ashes. J. Agric. Food Chem., 28: 660-662.
[54] Logan, T. J., Chang, A., Page, A., &Ganje, T. 1987. Accumulation of selenium in crops grown on sludge-treated soil. J. Environ. Qual., 16: 349-352.
[55] Yilmaz, D. D., & Temizgül, A. 2012. Assessment of Arsenic and Selenium Concentration with Chlorophyll Contents of Sugar Beet (Beta vulgaris var.saccharifera) and Wheat (Triticum aestivum) Exposed to Municipal Sewage Sludge Doses. Water Air Soil Pollut 223 (6): 3057-3066. doi:10.1007/s11270-012-1088-6.
[56] Borowska K., Koper, J., &Grabowska, M. 2012. Impact of farmyard manure and different doses of nitrogen on the availability of selenium by spring barley (Hordeum vulgare l.). Ecol Chem Eng A. 19 (6): 547-554. DOI: 10.2428/ecea.2012.19(06)055.
[57] Øgaard, A. F., Sogn, T. A. & Eich-Greatorex, S. 2006. Effect of cattle manure on selenate and selenite retention in soil. Nutr Cycl Agroecosyst. 76 (1): 39-48. doi:10.1007/s10705-006-9039-5.
[58] Gerhardt, M. B., Stern, P. C., Maroney, P. M., & Mitchell, S. C. 1992. Removal of Selenium from Petroleum Refinery Wastewaters. Unocal Corporation Brief Report, El Segundo, California, USA, 1992.
[59] Meng, X., Bang, S., & Korfiatis, G. P. 2002. Removal of selenocyanate from water using elemental iron, Water Res., 36 (15):3867-3873, http://dx.doi.org/10.1016/S0043-1354(02)00086-6.
[60] Reyes, H., García-Ruiz, S., Tonietto, B., Godoy, J., García Alonsoa, J., & Sanz-Medela, A. 2009. Quantification of Selenium Species in Petroleum Refinery Wastewaters using Ion Chromatography Coupled to Post-Column Isotope Dilution Analysis ICP-MS. J. Braz. Chem. Soc., 20 (10): 1878-1886.
[61] De Almeida, C., Ribeiro, A., Saint'Pierre, T., & Miekeley, N. 2009. Studies on the origin and transformation of selenium and its chemical species along the process of petroleum refining. Spectrochimica Acta Part B 64: 491–499.
[62] Ellrich, J., Hirner, A., & Stark, H. 1985. Distribution of trace elements in crude oils from southern Germany. Chem. Geol. 48:313-323.
[63] Lakin, H. W. 1973, Selenium in our environment. In Trace Elements in the Environment. Adv. Chem. 123: 96-111. DOI: 10.1021/ba-1973-0123.ch006.
[64] Lemly, A. D. 2004. Aquatic selenium pollution is a global environmental safety issue. Ecotoxicol. Environ. Safety 59: 44-56.
[65] Cumbie, P. M., 1980. Effects of pH adjustment and SO’ Ay ash conditioning on the Belews Creek Steam Station Ash Basin. Technical Report No. 80-01. Duke Power Company, Charlotte, NC.
[66] Sharma, S., & Singh, R., 1983. Selenium in soil, plant, and animal systems. CRC Crit. Rev. Environ. Control 13: 23-50.
[67] Barceloux, D. G., & Barceloux, D. B. 1999. Selenium. J. Toxicol. Clinical Toxicol. 37 (2): 145-172.
[68] Bitterli, C., Bañuelos, G. S., & Schulin, R. 2010. Use of transfer factors to characterize uptake of selenium by plants. J Geochem. Explor. 107: 206–216.
[69] Small, M., Germani, M. S., Small, A. M., Zoller, W. H., & Moyers, J. L., 1981. Airborne plume study of emissions from the processing of copper ores in southeastern Arizona. Environ. Sci. Technol. 1.5: 293-298.
[70] Perkins, W. T. 2011. Extreme selenium and tellurium contamination in soils - An eighty year-old industrial legacy surrounding a Ni refinery in the Swansea Valley. Sci. Total Environ., 412-413: 162-169. DOI: 10.1016/j.scitotenv.2011.09.056.
[71] Chen, Y. W., Li, L., D'Ulivo, A., & Belzile, N. 2006. Extraction and determination of elemental selenium in sediments-A comparative study. Anal. Chimica Acta, 577 (1): 126-133. DOI: 10.1016/j.aca.2006.06.020.
[72] Zhang, Y. Q. & Frankenberger, W. T. Jr. 2005. Removal of Selenium from River Water by a Microbial Community Enhanced with Enterobacter taylorae in Organic Carbon Coated Sand Columns. Sci. Total Environ. 346: 280-285.
[73] Di Gregorio, S., Lampis, S., & Vallini, G. 2005. Selenite precipitation by a rhizospheric strain of Stenotrophomonas sp. isolated from the root system of Astragalus bisulcatus: A biotechnological perspective. Environ. Intern. 31 (2): 233-241.
[74] Truong, Y. T. 2005. Reduction of selenium under controlled conditions. M. Sc. thesis, Laurentian University.
[75] Lakin, H. W., 1972. Selenium accumulation in soils and its adsorption by plants and animals. Geol. Soc. Am. Bull. 83: 181-190.
[76] Darcheville, O., Février, L., Haichar, F. Z., Berge, O., Martin-Garin, A., & Renault, P. 2008. Aqueous, solid and gaseous partitioning of selenium in an oxic sandy soil under different microbiological states. J. Environ. Radioactivity, 99 (6): 981-992. DOI: 10.1016/j.jenvrad.2007.11.006.
[77] Ahlrichs, J. S., & Hossner, L. R., 1987. Selenate and selenite mobility in overburden by saturated flow. J. Environ. Qual. 16: 95-98.
[78] Fio, J. L., Fujii, R., & Deverel, S. J., 1991. Selenium mobility and distribution in irrigated and nonirrigated alluvial soils. Soil Sci. Soc. Am. J. 55: 1313-1320.
[79] Supriatin, S., Weng, L., & Comans, R. 2015. Selenium speciation and extractability in Dutch agricultural soils. Sci. Total Environ., 532: 368-382. DOI: 10.1016/j.scitotenv.2015.06.005.
[80] Wang, Q., Zhang, J., Zhao, B., Xin, X., Deng, X., & Zhang, H. 2016. Influence of Long-Term Fertilization on Selenium Accumulation in Soil and Uptake by Crops. Pedosphere, 26 (1): 120-129. DOI: 10.1016/S1002-0160(15)60028-5.
[81] Kulp, T. R., & Pratt, L. M., 2004. Speciation and weathering of selenium in Upper Cretaceous chalk and shale from South Dakota and Wyoming, USA. Geochim. Cosmochim. Acta 68 (18): 3687–3701.
[82] Matamoros-Veloza, A., Newton, R. J., & Benning, L. G., 2011. What controls selenium release during shale weathering? Appl. Geochem. 26: S222–S226.
[83] Mills, T. J., Mast, M. A., Thomas, J., & Keith, G. 2016. Controls on selenium distribution and mobilization in an irrigated shallow groundwater system underlain by Mancos Shale, Uncompahgre River Basin, Colorado, USA. Sci. Total Environ., 566-567: 1621-1631. DOI: 10.1016/j.scitotenv.2016.06.063.
[84] Hawkesford, M. J., & Zhao, F. J. 2007. Strategies for increasing the selenium content of wheat J. Cereal Sci., 46 (3): 282-292. DOI: 10.1016/j.jcs.2007.02.006.
[85] Barrow, N. J., & Whelan, B. R. 1989. Testing a mechanistic model. 7. The effects of pH and of electrolyte on the reaction of selenite and selenate with a soil. J. Soil Sci. 40: 17–28.
[86] Fordyce, F., 2005. Selenium deficiency and toxicity in the environment. In: Selinus, O., Alloway, B. J., (eds). Essentials of medical geology: Impacts of the natural environment on public health. Academic Press, London, U. K. pp. 373-415.
[87] Elrashidi, M. A., Adriano, D. C., Workman, S. M., & Lindsay, W. L., 1987. Chemical equilibria of selenium in soils: a theoretical development. Soil Sci. 144: 141–152.
[88] Masscheleyn, P. H., Delaune, R. D., & Patrick, W. H., 1991. Arsenic and selenium chemistry as affected by sediment redox potential and pH. J. Environ. Qual.20: 522–527.
[89] Masscheleyn, P. H., & Patrick, W. H., 1993. Biogeochemical processes affecting selenium cycling in wetlands. Environ. Toxicol. Chem. 12: 2235–2243.
[90] Nakamaru, Y., & Altansuvd, J. 2014. Speciation and bioavailability of selenium and antimony in non-flooded and wetland soils: A review. Chemosphere, 111: 366-371. DOI: 10.1016/j.chemosphere.2014.04.024.
[91] Shaheen, S. M., Frohne, T., White, J. R., DeLaune, R. D., & Rinklebe, J. 2016. Redox-induced mobilization of copper, selenium, and zinc in deltaic soils originating from Mississippi (U. S. A.) and Nile (Egypt) River Deltas: A better understanding of biogeochemical processes for safe environmental management. J. Environ. Manage., DOI: 10.1016/j.jenvman.2016.05.032.
[92] Neal, R. H., 1995. Selenium. In: Alloway, B. J. (Ed.), Heavy Metals in Soils. Chapman & Hall, London, pp. 260–283.
[93] Dungan, R. S., & Frankenberger Jr., W. T., 1999. Microbial transformations of selenium and the bioremediation of seleniferous environments. Bioremediation J. 3 (3): 171–188.
[94] Stolz, J. F., & Oremland, R. S., 1999. Bacterial respiration of arsenic and selenium. FEMS Microbiol. Rev. 23: 615–627.
[95] He, Q., & Yao, K., 2010. Microbial reduction of selenium oxyanions by Anaeromyxobacter dehalogenans. Bioresour. Technol. 101: 3760–3764.
[96] Chasteen, T. G., & Bentley, R., 2003. Biomethylation of selenium and tellurium: Microorganisms and plants. Chem. Rev. 103 (1): 1–26.
[97] Zieve, R., & Peterson, P. J. 1984. Dimethylselenide: An important component of the biogeochemical cycling of selenium. Trace Subst. Environ. Health 18: 262-267.
[98] Francis, A. J., Duxbury, J. M., & Alexander, M. 1974. Evolution of dimethylselenide from soils. Appl. Microbial. 28:248-250.
[99] Gupta, S., Prakash, R., Prakash, N. T., Pearce, C., Pattrick, R., Hery, M., & Lloyd, J. 2010. Selenium mobilization by Pseudomonas aeruginosa (SNT-SG1) isolated from seleniferous soils from India. Geomicrobiol. J., 27 (1): 35-42. DOI: 10.1080/01490450903232173.
[100] Kabata-Pendias, A., & Pendias, H., 1992. Trace Elements in Soils and Plants, second ed. CRC Press, Boca Raton.
[101] Tan, J., 1989. The Atlas of Endemic Diseases and their Environments in the People’s Republic of China. Science Press, Beijing.
[102] Oldfield, J. E., 1999. Selenium World Atlas. Selenium–Tellurium Development Association, Grimbergen, Belgium, p. 83.
[103] Fleming, G. A., & Walsh, T. 1957. Selenium occurrence in certain Irish soils and its toxic effects on animal. Roy. Irish Acad. Proc. 58:151-166.
[104] Qin, H. B., Zhu, J. M., Liang, L., Wang, M. S., & Su, H. 2013. The bioavailability of selenium and risk assessment for human selenium poisoning in high-Se areas, China. Environ. Intern., 52: 66-74. DOI: 10.1016/j.envint.2012.12.003.
[105] Dhillon, K., & Dhillon, S. 2014. Development and mapping of seleniferous soils in northwestern India. Chemosphere 99: 56–63.
[106] Wang, J., Li, H., Li, Y., Yu, J., Yang, L., Feng, F., &Chen, Z. 2013. Speciation, distribution, and bioavailability of soil selenium in the Tibetan Plateau Kashin-beck disease area-a case study in Songpan County, Sichuan Province, China. Biol Trace Elem Res. 156(1-3):367-75. doi: 10.1007/s12011-013-9822-5.
[107] Sun, W., Huang, B., Zhao, Y., Shi, X., Darilek, J., Deng, X., Wang, H., & Zou, Z. 2009. Spatial variability of soil selenium as affected by geologic and pedogenic processes and its effect on ecosystem and human health. Geochem. J., 43: 217–225.
[108] Wang, S., Liang, D., Wang, D., Wei, W., Fu, D., & Lin, Z. 2012. Selenium fractionation and speciation in agriculture soils and accumulation in corn (Zea mays L.) under field conditions in Shaanxi Province, China. Sci. Total Environ., 427-428, 159-164. DOI: 10.1016/j.scitotenv.2012.03.091.
[109] Johnsson, L. 1991. Selenium uptake by plants as a function of soil type, organic matter content and pH. Plant Soil 133: 57–64.
[110] Zhang, Y. Q. & Moore, J. N. 1997. Controls on selenium distribution in wetland sediment, Benton Lake, Montana. Water Air Soil Pollut. 97: 323–340.
[111] Mao, J., & Xing, B. 1999. Fractionation and distribution of selenium in soils. Comm. Soil Sci. Plant Anal. 30: 2437-2447.
[112] Zhu, Y. G., Pilon-Smits. E., Zhao, F. J., Williams, P. N., & Meharg, A. A. 2009. Selenium in higher plants: understanding mechanism for biofortification and phytoremediation. Trends Plant Sci., 14 (8): 436–42.
[113] Wang, S. S., Wu, X. P., Liang, D. L., Xue, R. L., & Bao, J. D. 2010. Transformation and bioavailability for Pak choi (Brassica chinensis) of different forms of selenium added to calcareous soil. Acta Sci Circumstantiae 30 (12): 2499–505.
[114] Ippolito, J. A., Scheckel, K. G., & Barbarick, K. A. 2009. Selenium adsorption to aluminum-based water treatment residuals. J. Colloid Interface Sci., 338 (1): 48-55. DOI: 10.1016/j.jcis.2009.06.023.
[115] Xin-Bin,, Z., & Wei-Ming, S. 2007. Effect of Root Surface Iron Plaque on Se Translocation and Uptake by Fe-Deficient Rice. Pedosphere 17 (5): 580–587.
[116] Lessa, J., Araujo, A., Silva, G., Guilherme, L., & Lopes, G. 2016. Adsorption-desorption reactions of selenium (VI) in tropical cultivated and uncultivated soils under Cerrado biome. Chemosphere, 164: 271-277. DOI: 10.1016/j.chemosphere.2016.08.106.
[117] Nakamaru, Y., Tagami, K., & Uchida, S. 2006. Effect of phosphate addition on the sorption-desorption reaction of selenium in Japanese agricultural soils. Chemosphere, 63 (1): 109-115. DOI: 10.1016/j.chemosphere.2005.07.046.
[118] Mehdi, Y., Hornick, J., Istasse, L.,& Dufrasne, I. 2013. Selenium in the Environment, Metabolism and Involvement in Body Functions. Molecules, 18: 3292-3311; doi:10.3390/molecules18033292.
[119] Quinn, C., Freeman, J., Reynolds, R., Cappa, J., Fakra, S., Marcus, M., Lindblom, S., Quinn, E., Bennett, L., & Pilon-Smits, E. 2010. Selenium hyperaccumulation offers protection from cell disruptor herbivores. BMC Ecology, 10:19.
[120] Sura-de Jong, M., Reynolds, R. J. B., Richterova, K., Musilova, L., Staicu, L. C., Chocholata, I., … Pilon-Smits, E. (2015). Selenium hyperaccumulators harbor a diverse endophytic bacterial community characterized by high selenium resistance and plant growth promoting properties. Frontiers Plant Sci., 6: 113. http://doi.org/10.3389/fpls.2015.00113.
[121] Bañuelos, G. S., Terry, N., Zayed, A. M., & Wu, L.1995. Managing high soil selenium with phytoremediation. p. 394-405. IN: Decades later: a time for reassessment: Proceedings of the 12th national meeting of the American Society for Surface Mining and Reclamation.
[122] Bañuelos, G. S., Ajwa, H. A., Wu, L., & Zambrzuski, S. 1998. Selenium accumulation by Brassica napus grown in Se-laden soil from different depths of Kesterson Reservoir. J Soil Contam. 7 (4): 481-486.
[123] Zayed, A. M., & Terry, N. 1994. Selenium volatilization in roots and shoots: Effects of shoot removal and sulfate level. Journal of Plant Physiol. 143: 8-14.
[124] Pilon-Smits, E. A. H., de Souza, M. P., Lytle, C. M., Shang, C., Lugo, T.,& Terry, N. 1998. Selenium volatilization and assimilation by hybrid poplar (Populus tremula H alba). J Exp. Botany 49 (328): 1889-1892.
[125] Zhu, Y. L., Zayed, A. M., Qian, J., de Souza, M.,& Terry, N. 1999. Phytoaccumulation of trace elements by wetland plants: I. Water Hyacinth. J Environ. Qual. 28:339-344.
[126] Minson, D. J. Forage in Ruminant Nutrition; Academic Press: New York, NY, USA, 1990; pp. 369–381.
[127] Sharma, S., Goyal, R., & Sadana, U. S. 2014. Selenium Accumulation and Antioxidant Status of Rice Plants Grown on Seleniferous Soil from Northwestern India. Rice Sci., 21 (6): 327-334. DOI: 10.1016/S1672-6308(14)60270-5.
[128] Eiche, E., Bardelli, F., Nothstein, A. K., Charlet, L., Göttlicher, J., Steininger, R., Dhillon, K. S., &Sadana, U. S. 2015. Selenium distribution and speciation in plant parts of wheat (Triticum aestivum) and Indian mustard (Brassica juncea) from a seleniferous area of Punjab, India. Sci. Total Environ. 505: 952-961. DOI: 10.1016/j.scitotenv.2014.10.080.
[129] Zhao, F. J., Lopez-Bellido, F. J., Gray, C. W., Whalley, W. R., Clark, L. J., & McGrath, S. P. 2007. Effects of soil compaction and irrigation on the concentrations of selenium and arsenic in wheat grains. Sci. Total Environ, 372 (2-3): 433-439. DOI: 10.1016/j.scitotenv.2006.09.028.
[130] Feng, R., Wei, C., Tu, S., & Sun, X. 2009. Interactive effects of selenium and arsenic on their uptake by Pteris vittata L. under hydroponic conditions. Environ. Exp. Botany 65: 363–368.
[131] Munier-Lamy, C., Deneux-Mustin, S., Mustin, C., Merlet, D., Berthelin, J., & Leyval, C. 2007. Selenium bioavailability and uptake as affected by four different plants in a loamy clay soil with particular attention to mycorrhizae inoculated ryegrass. J. Environ. Radioactivity, 97 (2-3): 148-158. DOI: 10.1016/j.jenvrad.2007.04.001.
[132] Larsen, E. H., Lobinski, R., Burger-Mayer, K., Hansen, M., Ruziuk, R., Mazurowska, L., et al. (2006). Uptake and speciation of selenium in garlic cultivated in soil amended with symbiotic fungi (mycorrhiza) and selenate. Anal. Bioanal. Chem., 385: 1098–1108.
[133] Yu, Y., Luo, L., Yang, K., & Zhang, S. 2011. Influence of mycorrhizal inoculation on the accumulation and speciation of selenium in maize growing in selenite and selenate spiked soils. Pedobiologia, 54 (5-6): 267-272. DOI: 10.1016/j.pedobi.2011.04.002.
[134] Abrams, M. M., Shennan, C., Zasoski, R. J., & Burau, R. G. 1990. Selenomethionine uptake by wheat seedlings. Agronomy J., 82 (6): 1127–1130.
[135] Sors, T., Ellis, D., & Salt, D. 2005. Selenium uptake, translocation, assimilation and metabolic fate in plants. Photosynthesis Res., 86 (3): 373–389.
[136] erry, N., Zayed, A., de Souza, M., & Tarun, A. 2000. Selenium in higher plants. Ann. Rev. Plant Physiol. Plant Molecular Biol., 51: 401–432.
[137] Li, H. F., McGrath, S. P., & Zhao, F. J. 2008b. Selenium uptake, translocation and speciation in wheat supplied with selenate or selenite. New Phytol. 178: 92–102.
[138] Zhao, X. Q., Mitani, N., Yamaji, N., Shen, R. F., & Ma, J. F. 2010. Involvement of silicon influx transporter OsNIP2;1 in selenite uptake in rice. Plant Physiol 153:1871–7.
[139] Terry, N., Zayed, A., de Souza, M., & Tarun, A. 2000. Selenium in higher plants. Ann. Rev. Plant Physiol. Plant Molecular Biol., 51: 401–432.
[140] Freeman, J. L., Marcus, M. A., Fakra, S. C., Devonshire, J., McGrath, S. P., Quinn, C. F., et al. 2012. Selenium Hyperaccumulator Plants Stanleya pinnata and Astragalus bisulcatus Are Colonized by Se-Resistant, Se-Excluding Wasp and Beetle Seed Herbivores. PLoS ONE 7 (12): e50516. doi:10.1371/journal.pone.0050516.
[141] Hu, J., Zhao, Q., Cheng, X., Selomulya, C., Bai, C., Zhu, X., Li, X., & Xiong, H. 2014. Antioxidant activities of Se-SPI produced from soybean as accumulation and biotransformation reactor of natural selenium. Food Chem., 146: 531-537. DOI: 10.1016/j.foodchem.2013.09.087.
[142] Hamilton, J., & Beath, O. 1963. Selenium uptake and conversion by certain crop plants. Agronomy J., 55 (6): 528–531.
[143] Pyrzynska, K. 2009. Selenium speciation in enriched vegetables. Food Chem. 114: 1183–1191.
[144] Zayed, A., Lytle, C. M., & Terry, N. 1998. Accumulation and volatilization of different chemical species of selenium by plants. Planta, 206: 284–292.
[145] Wrobel, K., Wrobel, K., Kannamkumarath, S. S., Caruso, J. A., Wysocka, I. A., Bulska, E., et al. 2004. HPLC-ICP-MS speciation of selenium in enriched onion leaves –A potential dietary source of Se-methylselenocysteine. Food Chem., 86: 617–623.
[146] Pedrero, Z., Elvira, D., Camara, C., & Madrid, Y. 2007. Selenium transformation studies during Broccoli (Brassica oleracea) growing process by liquid chromatography–inductively coupled plasma mass spectrometry. Analytica Chimica Acta, 596: 251–256.
[147] Pilon M, Owen JD, Garifullina GF, Kurihara T, Mihara H, Esaki N, et al. 2003. Enhanced selenium tolerance and accumulation in transgenic Arabidopsis thaliana expressing a mouse selenocysteine lyase. Plant Physiol.,131: 1250–7.
[148] Van Hoewyk, D. 2013. A tale of two toxicities: malformed selenoproteins and oxidative stress both contribute to selenium stress in plants. Ann Bot., 112: 965–72.
[149] Pickering, I. J., Wright, C., Bubner, B., Ellis, D., Persans, M. W., Yu, E. Y., George, G. N., Prince, R. C., & Salt, D. E. 2003. Chemical form and distribution of selenium and sulfur in the selenium hyperaccumulator Astragalus bisulcatus. Plant Physiol., 131 (3), pp. 1460-1467. DOI: 10.1104/pp.014787.
[150] Pilon-Smits, E., & Quinn, C. F. 2010. Selenium metabolism in plants. In: Hell R, Mendel R, editors. Cell biology of metal and nutrients. Berlin: Springer, pp. 225–41.
[151] Dhillon, K., Dhillon, S., & Dogra, R. 2010. Selenium accumulation by forage and grain crops and volatilization from seleniferous soils amended with different organic materials. Chemosphere, 78 (5), pp. 548-556. DOI: 10.1016/j.chemosphere.2009.11.015.
[152] Dumont, E., Vanhaecke, F., & Cornelis, R. 2006. Selenium speciation from food sources to metabolites: A critical review. Anal. Bioanal. Chem. 385: 1304–1323.
[153] Terry, N., & Zayed, A. 1994. Selenium Volatilization by Plants. In Selenium in the Environment; Frankenberger, W., Jr., Benson, S., Eds.; Dekker: New York, USA,; pp. 343–367.
[154] Ellis, D. R., & Salt, D. E. Plants, selenium and human health. Curr. Opin. Plant Biol. 2003, 6, 273–279.
[155] Peterson, P. J., & G. Butler. 1962. The uptake and assimilation of selenite by higher plants. Aust. J. Biol. Sci. 15: 126-146.
[156] Lewis, B. G. 1976. Selenium in biological systems, and pathways for its volatilization in higher plants. pp. 389-409. In J. O. Nriagu (ed.) Environmental biogeochemistry. Ann Arbor Science, Ann Arbor, MI.
[157] Sathe, S. K., Mason, A. C., Rodibaugh, R., & Weaver, C. M. 1992. Chemical form of selenium in soybean (Glycine max L.) lectin. J Agric Food Chem; 40: 2084–91.
[158] Sieprawska A, Kornaś A., & Filek M., 2015. Involvement of selenium in protective mechanisms of plants under environmental stress conditions – Review. Acta Biologica Cracoviensia Series Botanica 57/1: 9–20, 2015 DOI: 10.1515/abcsb-2015-0014.
[159] Hasanuzzaman, M., Hossain, M., & Fujita, M. 2010. Selenium in Higher Plants: Physiological Role, Antioxidant Metabolism and Abiotic Stress Tolerance. J Plant Sci., 5: 354-375. DOI: 10.3923/jps.2010.354.375.
[160] Xue, T., Hartikainen, H., & Piironen, V. 2001. Antioxidative and growth-promoting effect of selenium in senescing lettuce. Plant Soil, 237: 55–61.
[161] Seppanen, M., Turakainen, M., Hartikainen, H. 2003. Selenium effects on oxidative stress in potato. Plant Sci 165: 311–9.
[162] Gill, S. S., & Tuteja, N. 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 48: 909-930.
[163] Freeman, J. L., Tamaoki, M., Stushnoff, C., Quinn, C. F., Cappa, J. J., Devonshire, J., Fakra, S. C., Marcus, M. A., McGrath, S. P., Hoewyk, D. V., & Pilon-Smits, E. A.., 2010. Molecular mechanisms of selenium tolerance and hyperaccumulation in Stanleya pinnata. Plant Physiol. 153 (4), 1630–1652.
[164] Feng, R., Wei, C., & Tu, S. 2013. The roles of selenium in protecting plants against abiotic stresses. Environ. Exp. Botany 87: 58–68.
[165] Paciolla, C., De Leonardis, S., & Dipierro, S., 2011. Effects of selenite and selenate on the antioxidant systems in Senecio scandens L. Plant Biosystems 145 (1): 253–259.
[166] Spallholz, J., & Hoffman, D. 2002. Selenium toxicity: Cause and effects in aquatic birds. Aquat. Toxicol., 57: 27-37.
[167] Lesk, C., Rowhani, P., & Ramankutty, N. 2016. Influence of extreme weather disasters on global crop production. Nature 529: 84–87. doi:10.1038/nature16467.
[168] Yao, X., Chu, J., & Wang, G. 2009. Effects of selenium on wheat seedlings under drought stress. Biol. Trace Element Res. 130 (3): 283–290.
[169] Nawaz, F., Ahmad, R., Ashraf, M., Waraich, E., & Khan, S. 2015. Effect of selenium foliar spray on physiological and biochemical processes and chemical constituents of wheat under drought stress. Ecotoxicol. Environ. Safety 113: 191–200.
[170] Tedeschini, E., Proietti, P., Timorato, V., D'Amato, R., Nasini, L., Del Buono, D., Businelli, D., & Frenguelli, G. 2015. Selenium as stressor and antioxidant affects pollen performance in Olea europaea. Flora: Morphology, Distribution, Functional Ecol. Plants, 21: 16-22. DOI: 10.1016/j.flora.2015.05.009.
[171] Chu, J. Z., Yao, X. Q., Zhang, & Z. N., 2010. Responses of wheat seedlings to exogenous selenium supply under cold stress. Biol. Trace Element Res. 136 (3): 355–363.
[172] Djanaguiraman, M., Prasad, P., & Seppanen, M., 2010. Selenium protects sorghum leaves from oxidative damage under high temperature stress by enhancing antioxidant defense system. Plant Physiol Biochem. 48 (12), 999–1007.
[173] Ekelund, N., & Danilov, R. A. 2001. The influence of selenium on photosynthesis and light-enhanced dark respiration (LEDR) in the flagellate Euglena gracilisafter exposure to ultraviolet radiation. Aquat Sci. 63: 457–65.
[174] Valkama, E., Kivimaenpaa, M., Hartikainen, H., & Wulff, A. 2003. The combined effects of enhanced UV-B radiation and selenium on growth, chlorophyll fluorescence and ultrastructure in strawberry (Fragaria ananassa) and barley (Hordeum vulgare) treated in the field. Agric For Meteorol., 120: 267–78.
[175] Yao, X., Chu, J., He, X., Ba, C., 2011. Protective role of selenium in wheat seedlings subjected to enhanced UV-B radiation. Russian J. Plant Physiol. 58 (2): 283–289.
[176] Qados, A. M. 2011. Effect of salt stress on plant growth and metabolism of bean plant Vicia faba (L.), J. Saudi Soc. Agric. Sci., 10, (1):7-15, http://dx.doi.org/10.1016/j.jssas.2010.06.002.
[177] Hasanuzzaman, M., Hossain, M. A., & Fujita, M., 2011. Selenium-induced up-regulation of the antioxidant defense and methylglyoxal detoxification system reduces salinity-induced damage in rapeseed seedlings. Biol. Trace Element Res. 143: 1704–1721.
[178] Kaur, S., & Nayyar, H. 2015. Selenium fertilization to salt-stressed mungbean (Vigna radiata L. Wilczek) plants reduces sodium uptake, improves reproductive function, pod set and seed yield Scientia Horticulturae, 197: 304-317. DOI: 10.1016/j.scienta.2015.09.048.
[179] Sethy, S. K., & Ghosh, S. 2013. Effect of heavy metals on germination of seeds. J Nat. Sci., Biol. Med., 4(2): 272–275. http://doi.org/10.4103/0976-9668.116964.
[180] Chibuike, G. U., & Obiora, S. C. 2014. Heavy Metal Polluted Soils: Effect on Plants and Bioremediation Methods. Applied Environ. Soil Sci., doi:10.1155/2014/752708.
[181] Odutayo, O. I., Feyisola, R. T., Godonu, K. G., & Makinde, O. A., 2015. Phyotoxicity level and effects of As phytoextraction using Helianthus Annuus L. (Sunflower) J. Nat. Sci. Res. 5 (1), 37-42.
[182] Malik, J. A., Goel, S., Kaur, N., Sharma, S., Singh, I., & Nayyar, H. 2012. Selenium antagonises the toxic effects of arsenic on mungbean (Phaseolus aureus Roxb.) plants by restricting its uptake and enhancing the antioxidative and detoxification mechanisms. Environ. Exp. Botany, 77: 242-248. DOI: 10.1016/j.envexpbot.2011.12.001.
[183] Pandey, C., & Gupta, M. 2015. Selenium and auxin mitigates arsenic stress in rice (Oryza sativa L.) by combining the role of stress indicators, modulators and genotoxicity assay. J. Haz. Mater., 287: 384-391. DOI: 10.1016/j.jhazmat.2015.01.044.
[184] Filek, M., Keskinen, R., Hartikainen, H., Szarejk, I., Janiak, A., Miszalski, Z., & Gold, A. 2008. The protective role of selenium in rape seedlings subjected to cadmium stress. J. Plant Physiol. 165: 833—844.
[185] Cartes, P., Jara, A., Pinilla, L., Rosas, A., & Mora, M. 2010. Selenium improves the antioxidant ability against aluminium-induced oxidative stress in ryegrass roots. Am. Applied Biol. 156: 297-307.
[186] Gzyl-Malcher, B., Filek, M., & Brezesiński, G. 2009. Influence of cadmium and selenate on the interactions between hormones and phospholipids. Langmuir 25: 13071–13076.
[187] Singh, M., Singh, H., & Bhandari, D. K. 1980. Interaction of selenium and sulphur on the growth and chemical composition of raya. Soil Sci., 129: 238-244.
[188] Hartikainen, H., Ekholm, P., Piironen, V., Xue, T., Koivu, T., &Yli-Halla, M. 1997. Quality of the ryegrass and lettuce yields as affected by selenium fertilization. Agric. Food Sci. Finland, 6: 381-387.
[189] Hartikainen, H., & Xue, T. 1999. The promotive effect of selenium on plant growth as triggered by ultraviolet irradiation. J. Environ. Qual., 28: 1372-1375.
[190] Djanaguiraman, M., Devi, D., Shanker,A., Sheeba, A., & Bangarusamy, U. 2005. Selenium -An antioxidative protectant in soybean during senescence. Plant Soil., 272: 77-86.
[191] Germ, M., Kreft, I., & Osvald, J. 2005. Influence of UV-B exclusion and selenium treatment on photochemical efficiency of photosystem II, yield and respiratory potential in pumpkins (Cucurbita pepo L.). Plant Physiol. Biochem., 43: 445-448.
[192] Turakainen, M., Hartikainen, H., & Seppanen, M. 2004. Effects of selenium treatments on potato (Solanum tuberosum L.) growth and concentrations of soluble sugars and starch. J. Agric. Food Chem., 52: 5378-5382.
[193] Turakainen, M., 2007. Selenium and its Effects on Growth, Yield and Tuber Quality in Potato. University of Helsinki, Helsinki. pp:50.
[194] Filek, M., Gzyl-Malcher, B., Zembala, M., Bednarska, E., Laggner, P., & Kriechbaum, M., 2010. Effect of selenium on characteristics of rape chloroplasts modified by cadmium. J Plant Physiol. 167 (1), 28–33.
[195] Simojoki, A., 2003. Allocation of added selenium in lettuce and its impact on root. Agric. Food Sci. Finland, 12: 155-164.
[196] Zhang, H., & Zhou, C.2013. Signal transduction in leaf senescence. Plant Mol Biol 82: 539–545.
[197] Lohman, K. N., Gan, S., John, M. C., Amasino, R. M. 1994. Molecular analysis of natural leaf senescence in Arabidopsis thaliana. Physiol Plant 92: 322–328.
[198] Xiao, D., Cui, Y., Xu, F., Xu, X., Gao, G., Wang, Y., Guo, Z., Wang, D., & Wang, N. 2015. Senescence-suppressed protein phosphatase directly interacts with the cytoplasmic domain of senescence-associated receptor-like kinase and negatively regulates leaf senescence in Arabidopsis. Plant Physiol.169: 1275–1291.
[199] Tyler, G. 2005. Changes in the concentrations of major, minor and rare-earth elements during leaf senescence and decomposition in a Fagus sylvatica forest. Forest Ecol. Manage. 206: 167–177.
[200] Moussa, H. R., & Ahmed, A. 2010. Protective role of selenium on development and physiological responses of Vicia faba. Intern. J. Vegetable Sci., 16 (2): 174-183.
[201] Cheng, B., Lian, H. F, Liu, Y. Y., Yu, X. H., Sun, Y. L., Sun, X. D., Shi, Q. H., & Liu, S. Q. 2016. Effects of selenium and sulfur on antioxidants and physiological parameters of garlic plants during senescence. J Integrative Agric. 15 (3), 566-572. DOI: 10.1016/S2095-3119 (15) 61201-1.
[202] Pezzarossa, B., Rosellini, I., Borghesi, E., Tonutti, P., & Malorgio, F. 2014. Effects of Se-enrichment on yield, fruit composition and ripening of tomato (Solanum lycopersicum) plants grown in hydroponics. Scientia Horticulturae, 165: 106-110. DOI: 10.1016/j.scienta.2013.10.029.
[203] Rahmat, S., Hajiboland, R., & Sadeghzade, N. 2016. Selenium delays leaf senescence in oil seed rape plants. Photosynthetica, 1-13. DOI: 10.1007/s11099-016-0643-6
[204] Hladun, K., Parker, D., & Trumble, J. 2011. Selenium accumulation in the floral tissues of two Brassicaceae species and its impact on floral traits and plant performance. Environ. Exp. Botany 74: 90– 97.
[205] Hanson, B., Lindblom, S. D., Loeffler, M. L., & Pilon-Smits, E. 2004. Selenium protects plants from phloem-feeding aphids due to both deterrence and toxicity. New Phytol. 162: 655–662.
[206] Freeman, J. L., Quinn, C. F., Lindblom, S. D., Klamper, E. M., & Pilon-Smits, E. A.. 2009. Selenium protects the hyperaccumulator Stanleya pinnata against black-tailed prairie dog herbivory in native seleniferous habitats. Am. J. Bot. 96: 1075–1085.
[207] Galeas, M. L., Klamper, E. M., Bennett, L. E., Freeman, J. L., Kondratieff, B. C., Quinn, C. F., Pilon-Smits, E. 2008. Selenium hyperaccumulation reduces plant arthropod loads in the field. New Phytol, 177: 715-724.
[208] El Mehdawi, A. F., Quinn, C. F., & Pilon-Smits, E. 2011. Selenium hyperaccumulators facilitate selenium-tolerant neighbors via phytoenrichment and reduced herbivory. Current Biol. 21 (17): 1440-1449. DOI: 10.1016/j.cub.2011.07.033.
[209] Hladun, K., Parker, D., Tran, K., & Trumble, J. 2013. Effects of selenium accumulation on phytotoxicity, herbivory, and pollination ecology in radish (Raphanus sativus L.). Environ. Pollut., 172: 70-75. DOI: 10.1016/j.envpol.2012.08.009.
Cite This Article
  • APA Style

    Uttam Saha, Abioye Fayiga, Leticia Sonon. (2017). Selenium in the Soil-Plant Environment: A Review. International Journal of Applied Agricultural Sciences, 3(1), 1-18. https://doi.org/10.11648/j.ijaas.20170301.11

    Copy | Download

    ACS Style

    Uttam Saha; Abioye Fayiga; Leticia Sonon. Selenium in the Soil-Plant Environment: A Review. Int. J. Appl. Agric. Sci. 2017, 3(1), 1-18. doi: 10.11648/j.ijaas.20170301.11

    Copy | Download

    AMA Style

    Uttam Saha, Abioye Fayiga, Leticia Sonon. Selenium in the Soil-Plant Environment: A Review. Int J Appl Agric Sci. 2017;3(1):1-18. doi: 10.11648/j.ijaas.20170301.11

    Copy | Download

  • @article{10.11648/j.ijaas.20170301.11,
      author = {Uttam Saha and Abioye Fayiga and Leticia Sonon},
      title = {Selenium in the Soil-Plant Environment: A Review},
      journal = {International Journal of Applied Agricultural Sciences},
      volume = {3},
      number = {1},
      pages = {1-18},
      doi = {10.11648/j.ijaas.20170301.11},
      url = {https://doi.org/10.11648/j.ijaas.20170301.11},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ijaas.20170301.11},
      abstract = {Selenium (Se) exhibits a “double-edged” behavior in animal and human nutrition. It is a micronutrient required in low concentrations by animals and humans, but toxic at high concentrations. Selenium deficiency has been associated with cancer and other health problems. Selenium requirements are commonly met through soils and plants such as wheat, rice, vegetables and maize in many countries. Selenium concentration in the soil generally ranges from 0.01-2.0 mg kg-1 but seleniferous soils usually contain more than 5 mg kg-1. Seleniferous soils have been reported in Ireland, China, India and USA. Weathering of parent rocks and atmospheric deposition of volcanic plumes are natural processes increasing Se levels in the environment. Anthropogenic sources of Se include irrigation, fertilizer use, sewage sludge and farmyard manure applications, coal combustion and crude oil processing, mining, smelting and waste incineration. Mobility of Se in the soil-plant system largely depends on its speciation and bioavailability in soil which is controlled by pH and redox potential. Plant uptake of Se varies with plant species and Se bioavailability in the soil. The uptake, translocation, transformation, metabolism, and functions of Se within the plant are further discussed in the paper. The release of Se in soils and subsequent uptake by plants has implications for meeting Se requirements in animals and humans.},
     year = {2017}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Selenium in the Soil-Plant Environment: A Review
    AU  - Uttam Saha
    AU  - Abioye Fayiga
    AU  - Leticia Sonon
    Y1  - 2017/01/12
    PY  - 2017
    N1  - https://doi.org/10.11648/j.ijaas.20170301.11
    DO  - 10.11648/j.ijaas.20170301.11
    T2  - International Journal of Applied Agricultural Sciences
    JF  - International Journal of Applied Agricultural Sciences
    JO  - International Journal of Applied Agricultural Sciences
    SP  - 1
    EP  - 18
    PB  - Science Publishing Group
    SN  - 2469-7885
    UR  - https://doi.org/10.11648/j.ijaas.20170301.11
    AB  - Selenium (Se) exhibits a “double-edged” behavior in animal and human nutrition. It is a micronutrient required in low concentrations by animals and humans, but toxic at high concentrations. Selenium deficiency has been associated with cancer and other health problems. Selenium requirements are commonly met through soils and plants such as wheat, rice, vegetables and maize in many countries. Selenium concentration in the soil generally ranges from 0.01-2.0 mg kg-1 but seleniferous soils usually contain more than 5 mg kg-1. Seleniferous soils have been reported in Ireland, China, India and USA. Weathering of parent rocks and atmospheric deposition of volcanic plumes are natural processes increasing Se levels in the environment. Anthropogenic sources of Se include irrigation, fertilizer use, sewage sludge and farmyard manure applications, coal combustion and crude oil processing, mining, smelting and waste incineration. Mobility of Se in the soil-plant system largely depends on its speciation and bioavailability in soil which is controlled by pH and redox potential. Plant uptake of Se varies with plant species and Se bioavailability in the soil. The uptake, translocation, transformation, metabolism, and functions of Se within the plant are further discussed in the paper. The release of Se in soils and subsequent uptake by plants has implications for meeting Se requirements in animals and humans.
    VL  - 3
    IS  - 1
    ER  - 

    Copy | Download

Author Information
  • Agricultural and Environmental Services Laboratories, University of Georgia Cooperative Extension, Athens, Georgia, USA

  • Freelancer, Ibadan, Nigeria

  • Agricultural and Environmental Services Laboratories, University of Georgia Cooperative Extension, Athens, Georgia, USA

  • Sections