The Intergovernmental Panel on Climate Change assumes that the inclining atmospheric CO2 concentration over recent years was almost exclusively determined by anthropogenic emissions, and this increase is made responsible for the rising temperature over the Industrial Era. Due to the far reaching consequences of this assertion, in this contribution we critically scrutinize different carbon cycle models and compare them with observations. We further contrast them with an alternative concept, which also includes temperature dependent natural emission and absorption with an uptake rate scaling proportional with the CO2 concentration. We show that this approach is in agreement with all observations, and under this premise not really human activities are responsible for the observed CO2 increase and the expected temperature rise in the atmosphere, but just opposite the temperature itself dominantly controls the CO2 increase. Therefore, not CO2 but primarily native impacts are responsible for any observed climate changes.
Published in | Earth Sciences (Volume 8, Issue 3) |
DOI | 10.11648/j.earth.20190803.13 |
Page(s) | 139-159 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2019. Published by Science Publishing Group |
Carbon Cycle, Atmospheric CO2 Concentration, CO2 Residence Time, Anthropogenic Emissions, Fossil Fuel Combustion, Land Use Change, Climate Change
[1] | AR5, In: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P. M. (Eds.), "Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change", Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2013. |
[2] | C. Le Quéré et al., "Global Carbon Budget 2017", Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2017-123, Open Access Earth System Science Data Discussions, Manuscript under review for journal Earth Syst. Sci. Data, 2017. |
[3] | CICERO, Center for International Climate Research, Oslo, R. Andrew: http://folk.uio.no/roberan/GCP2017.shtml. 2017. |
[4] | CDIAC, 2017: Carbon Dioxide Information Analysis Center, http://cdiac.ornl.gov/trends/emis/glo_2014.html. |
[5] | C. D. Keeling, S. C. Piper, R. B. Bacastow, M. Wahlen, T. P. Whorf, M. Heimann, H. A. Meijer, "Atmospheric CO2 and 13CO2 exchange with the terrestrial biosphere and oceans from 1978 to 2000: Observations and carbon cycle implications", In: Ehleringer, J. R., Cerling, T. E., Dearing, M. D. (Eds.), A History of Atmospheric CO2 and Its Effects on Plants, Animals, and Ecosystems. Springer Science+Business Media, New York, NY, USA, and Heidelberg, Germany, pp. 83–113 (actualized by Scripps-Institutes, USA), 2005. |
[6] | H. Harde, "Scrutinizing the carbon cycle and CO2 residence time in the atmosphere", Global and Planetary Change 152, pp. 19–26, 2017. http://dx.doi.org/10.1016/j.gloplacha.2017.02.009. |
[7] | M. L. Salby, "Atmospheric Carbon", Video Presentation, July 18, 2016. University College London. https://youtu.be/3q-M_uYkpT0. |
[8] | P. Köhler, J. Hauck, C. Völker, D. A. Wolf-Gladrow, M. Butzin, J. B. Halpern, K. Rice, R. E. Zeebe, Comment on “Scrutinizing the carbon cycle and CO2 residence time in the atmosphere” by H. Harde, Global and Planetary Change 164, pp. 67-71, 2017. https://doi.org/10.1016/j.gloplacha.2017.09.015 |
[9] | GISS, 2017: Goddard Institute for Space Studies: https://data.giss.nasa.gov/gistemp/. |
[10] | M. L. Salby, "Relationship Between Greenhouse Gases and Global Temperature", Video Presentation, April 18, 2013. Helmut-Schmidt-University Hamburg https://www.youtube.com/watch?v=2ROw_cDKwc0. |
[11] | M. L. Salby, "What is Really Behind the Increase of Atmospheric CO2"? Helmut-Schmidt-University Hamburg, 10. October 2018, https://youtu.be/rohF6K2avtY |
[12] | C. Le Quéré, M. R. Raupach, J. G. Canadell, G. Marland et al., "Trends in the sources and sinks of carbon dioxide", Nature Geosci., 2, pp. 831–836, 2009. doi:10.1038/ngeo689. |
[13] | P. Tans, NOAA/ESRL and R. Keeling, Scripps Institution of Oceanography (scrippsco2.ucsd.edu/), 2017. https://www.esrl.noaa.gov/gmd/ccgg/trends/data.html. |
[14] | F. Joos, M. Bruno, R. Fink, U. Siegenthaler, T. F. Stocker, C. Le Quéré, J. L. Sarmiento, "An efficient and accurate representation of complex oceanic and biospheric models of anthropogenic carbon uptake", Tellus B 48, pp. 397–417, 1996. doi:10.1034/j.1600-0889.1996.t01-2-00006.x. |
[15] | J. Hansen, M. Sato, P. Kharecha, G. Russell, D. W. Lea, M. Siddall, "Climate change and trace gases", Phil. Trans. R. Soc. A 365, pp. 1925–1954, 2007. doi:10.1098/rsta.2007.2052. |
[16] | J. Hansen, M. Sato, G. Russell, K. Pushker, "Climate sensitivity, sea level, and atmospheric CO2", Philos. Trans. R. Soc. A, 371, 20120294, 2013. doi:10.1098/rsta.2012.0294. https://www.nasa.gov/ |
[17] | I. Levin, B. Kromer, and S. Hammer, "Atmospheric Δ14CO2 trend in Western European background air from 2000 to 2012", Tellus B 65, pp. 1-7, 2013. |
[18] | Q. Hua, M. Barbetti, A. Z. Rakowski, "Atmospheric radiocarbon for the period 1950–2010". RADIOCARBON 55, pp. 2059–2072, (2013). Supplementary Material Table S2c, https://doi.org/10.2458/azu_js_rc.v55i2.16177 |
[19] | J. C. Turnbull, S. E. Mikaloff Fletcher, I. Ansell, G. W. Brailsford, R. C. Moss, M. W. Norris, K. Steinkamp, "Sixty years of radiocarbon dioxide measurements at Wellington, New Zealand: 1954–2014", Atmos. Chem. Phys. 17, pp. 14771–14784, 2017. https://doi.org/10.5194/acp-17-14771-2017. |
[20] | U. Siegenthaler, J. L. Sarmiento, "Atmospheric carbon dioxide and the ocean", Nature 365, pp. 119-125, 1993. |
[21] | P. Dietze, IPCC's Most Essential Model Errors, 2001. http://www.john-daly.com/forcing/moderr.htm; (Carbon Model Calculations, http://www.john-daly.com/dietze/cmodcalc.htm). |
[22] | G. C. Cawley, "On the Atmospheric Residence Time of Anthropogenically Sourced Carbon Dioxide", Energy Fuels 25, pp. 5503–5513, 2011. dx.doi.org/10.1021/ef200914u |
[23] | H.-J. Lüdecke, C. O. Weiss, "Simple Model for the Anthropogenically Forced CO2 Cycle Tested on Measured Quantities", JGEESI, 8(4), pp. 1-12, 2016. DOI: 10.9734/JGEESI/2016/30532. |
[24] | R. E. Essenhigh, "Potential dependence of global warming on the residence time (RT) in the atmosphere of anthropogenically sourced carbon dioxide", Energy Fuel 23, pp. 2773–2784, 2009. http://pubs.acs.org/doi/abs/10.1021/ef800581r. |
[25] | E. Berry, "Human CO2 has little effect on atmospheric CO2", 2019. https://edberry.com/blog/climate-physics/agw-hypothesis/contradictions-to-ipccs-climate-change-theory/ |
[26] | NOAA, 2017: https://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.htmlhttp://iridl.ldeo.columbia.edu/SOURCES/.NOAA/.NCDC/.GHCN/.v2/?bbox=bb%3A-161.488%3A16.360%3A-150.062%3A23.051%3Abb |
[27] | NOAA, 2018: http://iridl.ldeo.columbia.edu/SOURCES/.NOAA/.NCDC/.ERSST/.version2/.SST/index.html http://iridl.ldeo.columbia.edu/SOURCES/.NOAA/.NCDC/.ERSST/.version2/.SST/X/%28164W%29VALUES/T/%28Jan%201938%29%28Dec%202009%29RANGEEDGES/Y/%2819N%29VALUES/datafiles.html |
[28] | O. Humlum, K. Stordahl, J. E. Solheim, "The phase relation between atmospheric carbon dioxide and global temperature", Global and Planetary Change 100, pp. 51-69, 2013. |
[29] | M. Richardson, Comment on “The phase relation between atmospheric carbon dioxide and global temperature” by Humlum, Stordahl and Solheim, Global and Planetary Change 107, pp. 226-228, 2013. |
[30] | D. L. Royer, R. A. Berner, I. P. Montañez, N. J. Tabor, D. J. Beerling, "CO2 as a primary driver of Phanerozoic climate", GSA Today 14, no. 3, 2004. doi: 10.1130/1052-5173(2004)014<4:CAAPDO>2.0.CO;2. |
[31] | Y. G. Zhang, M. Pagani, J. Henderiks, H. Ren, "A long history of equatorial deep-water upwelling in the Pacific Ocean", Earth and Planetary Science Letters 467, pp. 1–9, 2017. http://dx.doi.org/10.1016/j.epsl.2017.03.016. |
[32] | T. Takahashi, S. C. Sutherland, R. Wanninkhof, C. Sweeney, R. A. Feely et al., "Climatological mean and decadal change in surface ocean pCO2 and net sea-air CO2 flux over the global oceans", Deep-Sea Res. II, 56, pp. 554–577, 2009. doi:10.1016/j.dsr2.2008.12.009. |
[33] | N. U. Benson, O. O. Osibanjo, F. E. Asuquo, W. U. Anake, "Observed trends of pCO2 and air-sea CO2 fluxes in the North Atlantic Ocean, Intern. J. Marine Science 4, pp. 1-7, 2014. |
[34] | J.-S. Lee, "Monitoring soil respiration using an automatic operating chamber in a Gwangneung temperate deciduous forest", J. Ecology & Field Biology 34(4), pp. 411-423, 2011. |
[35] | C. Huntingford, O. K. Atkin, A. Martinez-de la Torre, L. M. Mercado, M. A. Heskel, A. B. Harper, K. J. Bloomfield, O. S. O’Sullivan, P. B. Reich, K. R. Wythers, E. E. Butler, M. Chen, K. L. Griffin, P. Meir, M. G. Tjoelker, M. H. Turnbull, S. Sitch, A. Wiltshire, Y. Malhi, "Implications of improved representations of plant respiration in a changing climate", NATURE COMMUNICATIONS 8, 1602, 2017. DOI: 10.1038/s41467-017-01774-z. |
[36] | H. Harde, "Radiation Transfer Calculations and Assessment of Global Warming by CO2", International Journal of Atmospheric Sciences, Volume 2017, Article ID 9251034, pp. 1-30, 2017. https://doi.org/10.1155/2017/9251034. |
[37] | H. Harde, "Was tragen CO2 und die Sonne zur globalen Erwärmung bei"? 12. Internationale EIKE Klima- und Energiekonferenz und 13th International Conference on Climate Change (ICCC-13), München, 23. u. 24. November, 2018, https://youtu.be/ldrG4mn_KCs. |
[38] | T. B. Coplen, "Reporting of stable hydrogen, carbon and oxygen isotopic abundances", Pure and Applied Chemistry 66, pp. 273-276, 1994. |
[39] | U. Siegenthaler, K. O. Münnich, "13C/12C fractionation during CO2 transfer from air to sea", In: Bolin, B. (Ed.): Carbon cycle modelling (SCOPE 16), John Wiley & Sons, pp. 249-257, 1981. |
[40] | M. L. Salby, "Physics of the Atmosphere and Climate", Cambridge University Press, Cambridge 2012. (ISBN: 978-0-521-76718-7). |
[41] | D. M. Etheridge, L. P. Steele, R. L. Langenfelds, R. J. Francey, J.-M. Barnola, V. I. Morgan, "Natural and anthropogenic changes in atmospheric CO2 over the last 1000 years from air in Antarctic ice and firn", J. Geophys. Res. 101, pp. 4115-4128, 1996. |
[42] | Friedli H., H. Lötscher, H. Oeschger, U. Siegenthaler, B. Stauffer, 1986. Ice core record of the 13C/12C ratio of atmospheric CO2 in the past two centuries, Nature 324, pp. 237-238. |
[43] | H. Suess, "Radiocarbon Concentration in Modern Wood", Science 122, Issue 3166, pp. 415-417, 1955. DOI: 10.1126/science.122.3166.415-a |
[44] | J. G. Canadell, Le Quéré, C., Raupach, M. R., Field, C. B., Buitenhuis, E. T., Ciais, P., Conway, T. J., Gillett, N. P., Houghton, R. A., and Marland G., "Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks", P. Natl. Acad. USA, 104(47), 18866–18870, 2007, doi:10.1073/pnas.0702737104. |
[45] | M. Gloor, J. L. Sarmiento, and N. Gruber, "What can be learned about carbon cycle climate feedbacks from the CO2 airborne fraction"? Atmos. Chem. Phys., 10, pp. 7739–7751, 2010. www.atmos-chem-phys.net/10/7739/2010/, doi:10.5194/acp-10-7739-2010. |
[46] | A. P. Ballantyne, C. B. Alden, J. B. Miller, P. P. Tans, J. W. C. White, "Increase in observed net carbon dioxide uptake by land and oceans during the past 50 years", Nature 488, pp. 70-73, 2012. doi:10.1038/nature11299 |
[47] | J. Steele, "How NOAA and Bad Modeling Invented an Ocean Acidification Icon", Part 2 – Bad Models, 2017. https://wattsupwiththat.com/2017/03/02/how-noaa-and-bad-modeling-invented-an-ocean-acidification-icon-part-2-bad-models/ |
[48] | W. Evans, B. Hales, P. G. Strut, "Seasonal cycle of surface ocean pCO2 on the Oregon shelf", J. Geophys. Research 116, 2011, DOI: 10.1029/2010JC006625. |
[49] | K. R. Arrigo, G. L. van Dijken, "Continued increases in Arctic Ocean primary production", Progress in Oceanography 136, pp. 60-70, 2015, https://doi.org/10.1016/j.pocean.2015.05.002. |
[50] | D. K. Steinberg, M. W. Lomas, J. S. Cope, "Long-term increase in mesozooplankton biomass in the Sargasso Sea: Linkage to climate and implications for food web dynamics and biogeochemical cycling", Global Biogeochemical Cycle 26, 2012, DOI: 10.1029/2010GB004026. |
[51] | K. M. Krumhardt, N. S. Lovenduski, N. M. Freeman, N. R. Bates, "Apparent increase in coccolithophore abundance in the subtropical North Atlantic from 1990 to 2014", Biogeosciences 13, pp. 1163-1177, 2016. doi:10.5194/bg-13-1163-2016, http://www.biogeosciences.net/13/1163/2016/. |
[52] | F. P. Chavez, M. Messié, J. T. Pennington, "Marine Primary Production in Relation to Climate Variability and Change", Annu. Rev. Mar. Sci. 3, pp. 227–260, 2011, doi:10.1146/annurev.marine.010908.163917. |
[53] | U. Riebesell, K. G. Schulz, R. G. J. Bellerby, M. Botros, P. Fritsche, M. Meyerhöfer, C. Neill, G. Nondal, A. Oschlies, J. Wohlers, E. Zöllner, "Enhanced biological carbon consumption in a high CO2 ocean", Nature 450, pp. 545-548, 2007, doi:10.1038/nature06267. |
[54] | A. M. P. McDonnell, K. O. Buesseler, "Variability in the average sinking velocity of marine particles", Limnology and Oceanography 55, pp. 2085–2096, 2010. DOI:10.4319/lo.2010.55.5.2085. |
[55] | T. Weber, J. A. Cram, S. W. Leung, T. DeVries, C. Deutsch, "Deep ocean nutrients imply large latitudinal variation in particle transfer efficiency", PNAS 113 no. 31, pp. 8606–8611, 2016, doi: 10.1073/pnas.1604414113. |
[56] | F. Abrantes, P. Cermeno, C. Lopes, O. Romero, L. Matos, J. Van Iperen, M. Rufino, V. Magalhães, "Diatoms Si uptake capacity drives carbon export in coastal upwelling systems", Biogeosciences 13, pp. 4099–4109, 2016, doi:10.5194/bg-13-4099-2016. www.biogeosciences.net/ 13/4099/2016/, |
[57] | M. Stuiver, H. A. Polach, "Discussion Reporting of 14C Data", RADIOCARBON 19, No. 3, pp. 355-363, 1977. |
APA Style
Hermann Harde. (2019). What Humans Contribute to Atmospheric CO2: Comparison of Carbon Cycle Models with Observations. Earth Sciences, 8(3), 139-159. https://doi.org/10.11648/j.earth.20190803.13
ACS Style
Hermann Harde. What Humans Contribute to Atmospheric CO2: Comparison of Carbon Cycle Models with Observations. Earth Sci. 2019, 8(3), 139-159. doi: 10.11648/j.earth.20190803.13
AMA Style
Hermann Harde. What Humans Contribute to Atmospheric CO2: Comparison of Carbon Cycle Models with Observations. Earth Sci. 2019;8(3):139-159. doi: 10.11648/j.earth.20190803.13
@article{10.11648/j.earth.20190803.13, author = {Hermann Harde}, title = {What Humans Contribute to Atmospheric CO2: Comparison of Carbon Cycle Models with Observations}, journal = {Earth Sciences}, volume = {8}, number = {3}, pages = {139-159}, doi = {10.11648/j.earth.20190803.13}, url = {https://doi.org/10.11648/j.earth.20190803.13}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.earth.20190803.13}, abstract = {The Intergovernmental Panel on Climate Change assumes that the inclining atmospheric CO2 concentration over recent years was almost exclusively determined by anthropogenic emissions, and this increase is made responsible for the rising temperature over the Industrial Era. Due to the far reaching consequences of this assertion, in this contribution we critically scrutinize different carbon cycle models and compare them with observations. We further contrast them with an alternative concept, which also includes temperature dependent natural emission and absorption with an uptake rate scaling proportional with the CO2 concentration. We show that this approach is in agreement with all observations, and under this premise not really human activities are responsible for the observed CO2 increase and the expected temperature rise in the atmosphere, but just opposite the temperature itself dominantly controls the CO2 increase. Therefore, not CO2 but primarily native impacts are responsible for any observed climate changes.}, year = {2019} }
TY - JOUR T1 - What Humans Contribute to Atmospheric CO2: Comparison of Carbon Cycle Models with Observations AU - Hermann Harde Y1 - 2019/06/12 PY - 2019 N1 - https://doi.org/10.11648/j.earth.20190803.13 DO - 10.11648/j.earth.20190803.13 T2 - Earth Sciences JF - Earth Sciences JO - Earth Sciences SP - 139 EP - 159 PB - Science Publishing Group SN - 2328-5982 UR - https://doi.org/10.11648/j.earth.20190803.13 AB - The Intergovernmental Panel on Climate Change assumes that the inclining atmospheric CO2 concentration over recent years was almost exclusively determined by anthropogenic emissions, and this increase is made responsible for the rising temperature over the Industrial Era. Due to the far reaching consequences of this assertion, in this contribution we critically scrutinize different carbon cycle models and compare them with observations. We further contrast them with an alternative concept, which also includes temperature dependent natural emission and absorption with an uptake rate scaling proportional with the CO2 concentration. We show that this approach is in agreement with all observations, and under this premise not really human activities are responsible for the observed CO2 increase and the expected temperature rise in the atmosphere, but just opposite the temperature itself dominantly controls the CO2 increase. Therefore, not CO2 but primarily native impacts are responsible for any observed climate changes. VL - 8 IS - 3 ER -