| Peer-Reviewed

The Impact of the Processes in the Southern Ocean on ENSO Development

Received: 1 April 2019     Accepted: 26 April 2019     Published: 15 May 2019
Views:       Downloads:
Abstract

The paper presents the review of the model study of the role of the Southern Ocean in the processes of interaction of the ocean-atmosphere system at short time scales impacting the El Niño–Southern Oscillation (ENSO). It is shown that the variability of wind and atmospheric pressure over the Antarctic Circumpolar Current (ACC), together with the effects of the topography and coastline, significantly impact the development of ENSO events. A new paradigm for ENSO is proposed that allows explaining the current weakening of the interrelation between the variability in wind and water volume in the tropical warm pool in the western equatorial Pacific and the onset of ENSO. The weakness of the interrelationship between ENSO and variability in the equatorial warm water volume of the equatorial Pacific, together with wind variability in the western equatorial Pacific, can be explained by the fact that the process occurred in the Southern Ocean recently became a major contributor amplifying ENSO events. The reproduction in numerical models of ocean dynamics for the mechanism found can improve the accuracy of the forecast of El Niño events.

Published in Earth Sciences (Volume 8, Issue 2)
DOI 10.11648/j.earth.20190802.15
Page(s) 117-125
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2019. Published by Science Publishing Group

Keywords

ENSO, The Southern Ocean, Numerical Modelling

References
[1] Alexander, M. A., et al. 2008: Forecasting Pacific SSTs: Linear inverse model predictions of the PDO, J. Clim., 21, 385–402, doi:10.1175/2007JCLI1849.1.
[2] Ashok, K., S. K. Behera, S. A. Rao, H. Weng, and T. Yamagata, 2007: El Niño Modoki and its possible teleconnection, J. Geophys. Res., 112, C11007, doi:10.1029/2006JC003798.
[3] Blaker, A. T., B. Sinha, V. O. Ivchenko, N. C. Wells, and V. B. Zalesny, 2006: Identifying the roles of the ocean and atmosphere in creating a rapid equatorial response to a Southern Ocean anomaly, Geophysical Research Letters, v.33, L06720, doi:10.1029/2005GL025474.
[4] Byshev V. I., et al. 2012: El Niño as a Consequence of the Global Oscillation in the Dynamics of the Earth’s Climatic System. Dokl. Akad. Nauk, 446, no 1, pp. 1089-1093.
[5] Chang, P., L. Zhang, R. Saravanan, D. J. Vimont, J. C. H. Chiang, L. Ji, H. Seidel, and M. K. Tippett, 2007: Pacific meridional mode and El Niño–Southern Oscillation, Geophys. Res. Lett., 34, L16608, doi:10.1029/2007GL030302.
[6] Clarke, A. J., and S. Van Gorder, 2003: Improving El Niño prediction using a space-time integration of Indo-Pacific winds and equatorial Pacific upper ocean heat content, Geophys. Res. Lett., 30(7), 1399, doi:10.1029/2002GL016673.
[7] Cox, C. M., and B. F., Chao, 2002: Detection of a large-scale mass redistribution on the terrestrial system since 1998. Science, 297, pp. 831– 833.
[8] Dong, B., R. T. Sutton, and A. A. Scaife, 2006: Multidecadal modulation of El Niño-Southern Oscillation (ENSO) variance by Atlantic Ocean sea surface temperatures, Geophysical Research Letters, v.33, L08705, doi:10.1029/2006GL025766.
[9] Eisenman I., L. Yu, E. Tziperman, 2005: Westerly Wind Bursts: ENSO’s tail rather than the dog?, J. Climate, 18, 5224-5238.
[10] Flügel M., P. Chang, C. Penland, 2004: The role of stochastic forcing in modulating ENSO predictability, J. Climate, 17, 3125-3140.
[11] Gushchina, D. Yu. “El Niño Modification under Conditions of Changing Climate: Monitoring, Causes, and Teleconnections.” Abstracts of the Doctor’s Thesis in Geography (Moscow, 2014) [in Russian].
[12] Horii T., I. Ueki, and K. Hanawa, 2012: Breakdown of ENSO predictors in the 2000s: Decadal changes of recharge/discharge-SST phase relation and atmospheric intraseasonal forcing, Geophys. Res. Lett., 39, L10707, doi:10.1029/2012GL051740.
[13] Hughes, C. W., and Stepanov, V. 2004: Ocean dynamics associated with rapid J2 fluctuations: Importance of circumpolar modes and identification of a coherent Arctic mode. J. Geophys. Res., 109, C06002, doi: 10.1029/2003JC002176.
[14] Ivchenko V. O., V. B. Zalesny, and M. R. Drinkwater, 2004: Can the equatorial ocean quickly respond to Antarctica sea ice/salinity anomalies? Geophysical Research Letters, v.31, L15310, doi:10.1029/2004GL020472.
[15] Ivchenko V. O., V. B. Zalesny, and M. R. Drinkwater and J. Schröter, 2006: A quick response of the equatorial ocean to Antarctic sea ice/salinity anomalies, J. of Geophysical Research, vol. 111, C10018, doi:10.1029/2005JC003061.
[16] Jin, F.-F. 1997: An equatorial recharge paradigm for ENSO. Part I: Conceptual model. J. Atmos. Sci., 1997, V.54, p. 811–829.
[17] Kao, H.-Y., and J.-Y. Yu, 2009: Contrasting eastern-Pacific and central-Pacific types of ENSO. J. Climate, 22, 615–632.
[18] Kug, J.-S., F.-F. Jin, and S.-I. An, 2009: Two types of El Niño events: Cold Tongue El Niño and Warm Pool El Niño, J. Clim., 22, 1499–1515, doi:10.1175/2008JCLI2624.1.
[19] Kwok, R. and J. C. Comiso, 2002: Southern Ocean climate and sea ice anomalies associated with the Southern Oscillation, J. Climate, 15, 487-501.
[20] Larkin, N. K., and D. E. Harrison, 2005: Global seasonal temperature and precipitation anomalies during El Niño autumn and winter, Geophys. Res. Lett., 32, L16705, doi:10.1029/2005GL022860.
[21] Lau N.-C., A. Leetmaa, M. J. Nath, H.-L. Wang, 2005: Influence of ENSO-induced Indo-Western Pacific SST anomalies on extratropical atmospheric variability during the boreal summer, Climate, 18, 2922-2942.
[22] Lee, T., and M. J. McPhaden, 2010: Increasing intensity of El Niño in the central-equatorial Pacific, Geophys. Res. Lett., 37, L14603, doi:10.1029/2010GL044007.
[23] Madden, R. A., and P. R. Julian, 1972: Description of global scale circulation cells in the tropics with a 40–50-day period, J. Atmos. Sci., 29, 1109–1123, doi:10.1175/1520-0469(1972)029< 1109:DOGSCC>2.0. CO;2.
[24] McPhaden, M. J. 2003: Tropical Pacific Ocean heat content variations and ENSO persistence barriers, Geophys. Res. Lett., 30(9), 1480, doi:10.1029/2003GL016872.
[25] McPhaden, M. J., X. Zhang, H. H. Hendon, and M. C. Wheeler, 2006: Large-scale dynamics and MJO forcing of ENSO variability, Geophys. Res. Lett., 33, L16702, doi:10.1029/2006GL026786.
[26] Menkes, C. E., et al. 2014: About the Role of Westerly Wind Events in the Possible Development of an El Niño in 2014. Geophys. Res. Lett., 41, Issue 18, pp. 6476–6483.
[27] Mokhov I. I., and D. A. Smirnov, 2006: El Niño-Southern Oscillation drives North Atlantic Oscillation as revealed with nonlinear techniques from climatic indices, Geophysical Research Letters, v.33, L03708, doi:10.1029/2005GL024557.
[28] Müller W. A., and E. Roecker, 2006: ENSO impact on midlatitude circulation patterns in future climate change projections, Geophysical Research Letters, v.33, L05711, doi:10.1029/2005GL025032.
[29] Nicholls N., H.-J. Baek, A. Gosai, L. E. Chambers, Y. Choi, D. Collins, P. M. Della-Marta, G. M. Griffiths, M. R. Haylock, N. Iga, R. Lata, L. Maitrepierre, M. J. Manton, H. Nakamigawa, N. Ouprasitwong, D. Solofa, L. Tahani, D. T. Thuy, L. Tibig, B. Trewin, K. Vediapan, and P. Zhai, 2005: The El Niño-Southern Oscillation and daily temperature extremes in east Asia and the west Pacific, Geophysical Research Letters, v.32, L16714, doi:10.1029/2005GL022621.
[30] Pierce, D. W., T. P. Barnett, and M. Latif, 2000: Connections between the Pacific Ocean tropics and midlatitudes on decadal timescales, J. Clim., 13, 1173–1194, doi:10.1175/1520-0442(2000)013<1173:CBTPOT>2.0. CO2.
[31] Simmonds, I., and T. H. Jacka, 1995: Relationship between the interannual variability of Antarctic sea ice and the Southern Oscillation, J. Climate, 8, 637-647.
[32] Stepanov V. N. and C. W. Hughes, 2004: The Parameterization of Ocean Self-Attraction and Loading in Numerical Models of the Ocean Circulation, J. Geophys. Res. 109, C0037.
[33] Stepanov V. N. and C. W. Hughes, 2006: Propagation of signals in basin-scale bottom pressure from a barotropic model, J. Geophys. Res., 111, C12002, doi:10.1029/2005JC003450.
[34] Stepanov V. N. 2009: The meridional transport fluctuations in the Southern Ocean and its link with the ENSO events. Oceanology, Vol. 49, No. 1, pp. 5–19
[35] Stepanov V. N. 2009: The modelling of the ENSO events using a simple model. Oceanology, Vol. 49, No. 3, pp. 310–319.
[36] Stepanov V. N. 2016: A plausible reason of the changes in El Niño parameters in the 2000s. Russian Meteorology and Hydrology, Vol. 41, No 11, pp. 747-759, doi10.3103/S106837391611 0029.
[37] Stepanov V. N., H. Zuo, and K. Haines, 2012: The link between the Barents Sea and ENSO events simulated by NEMO model. Ocean Sciences, 8, pp. 971–982, doi:10.5194/os-8-971-2012.
[38] Su J., et al. 2014: Abrupt Termination of the 2012 Pacific Warming and Its Implication on ENSO Prediction. Geophys. Res. Lett., 41, pp. 9058–9064, doi:10.1002/2014GL062380.
[39] Terray P. 2011: Southern Hemisphere extra-tropical forcing: a new paradigm for El Niño -Southern Oscillation, Clim Dyn (2011) 36:2171–2199, DOI 10.1007/s00382-010-0825-z.
[40] Vimont, D. J., J. M. Wallace, and D. S. Battisti, 2003: The seasonal footprinting mechanism in the Pacific: Implications for ENSO, J. Clim., 16, 2668–2675, doi:10.1175/1520-0442(2003)016<2668:TSFMIT>2.0. CO2.
[41] Vimont, D. J., D. S. Battisti, and A. C. Hirst, 2003: The seasonal footprinting mechanism in the CSIRO general circulation models, J. Clim., 16, 2653–2667, doi:10.1175/1520-0442(2003)016<2653:TSFMIT>2.0. CO2.
[42] Wang S.-Yu, M. L’Heureux, and H.-H. Chia, 2012: ENSO prediction one year in advance using western North Pacific sea surface temperatures, Geophys. Res. Lett., 39, L05702, doi:10.1029/2012GL050909.
[43] Yeh, S.-W., J.-S. Kug, B. Dewitte, M.-H. Kwon, B. Kirtman, and F.-F. Jin, 2009: El Niño in a changing climate, Nature, 461, 511–514, doi:10.1038/nature08316.
[44] Yuan, X. and D. G. Martinson, 2000: Antarctic sea ice extent variability and its global connectivity, J. Climate, 13, 1697-1717.
Cite This Article
  • APA Style

    Vladimir Nikolaevich Stepanov. (2019). The Impact of the Processes in the Southern Ocean on ENSO Development. Earth Sciences, 8(2), 117-125. https://doi.org/10.11648/j.earth.20190802.15

    Copy | Download

    ACS Style

    Vladimir Nikolaevich Stepanov. The Impact of the Processes in the Southern Ocean on ENSO Development. Earth Sci. 2019, 8(2), 117-125. doi: 10.11648/j.earth.20190802.15

    Copy | Download

    AMA Style

    Vladimir Nikolaevich Stepanov. The Impact of the Processes in the Southern Ocean on ENSO Development. Earth Sci. 2019;8(2):117-125. doi: 10.11648/j.earth.20190802.15

    Copy | Download

  • @article{10.11648/j.earth.20190802.15,
      author = {Vladimir Nikolaevich Stepanov},
      title = {The Impact of the Processes in the Southern Ocean on ENSO Development},
      journal = {Earth Sciences},
      volume = {8},
      number = {2},
      pages = {117-125},
      doi = {10.11648/j.earth.20190802.15},
      url = {https://doi.org/10.11648/j.earth.20190802.15},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.earth.20190802.15},
      abstract = {The paper presents the review of the model study of the role of the Southern Ocean in the processes of interaction of the ocean-atmosphere system at short time scales impacting the El Niño–Southern Oscillation (ENSO). It is shown that the variability of wind and atmospheric pressure over the Antarctic Circumpolar Current (ACC), together with the effects of the topography and coastline, significantly impact the development of ENSO events. A new paradigm for ENSO is proposed that allows explaining the current weakening of the interrelation between the variability in wind and water volume in the tropical warm pool in the western equatorial Pacific and the onset of ENSO. The weakness of the interrelationship between ENSO and variability in the equatorial warm water volume of the equatorial Pacific, together with wind variability in the western equatorial Pacific, can be explained by the fact that the process occurred in the Southern Ocean recently became a major contributor amplifying ENSO events. The reproduction in numerical models of ocean dynamics for the mechanism found can improve the accuracy of the forecast of El Niño events.},
     year = {2019}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - The Impact of the Processes in the Southern Ocean on ENSO Development
    AU  - Vladimir Nikolaevich Stepanov
    Y1  - 2019/05/15
    PY  - 2019
    N1  - https://doi.org/10.11648/j.earth.20190802.15
    DO  - 10.11648/j.earth.20190802.15
    T2  - Earth Sciences
    JF  - Earth Sciences
    JO  - Earth Sciences
    SP  - 117
    EP  - 125
    PB  - Science Publishing Group
    SN  - 2328-5982
    UR  - https://doi.org/10.11648/j.earth.20190802.15
    AB  - The paper presents the review of the model study of the role of the Southern Ocean in the processes of interaction of the ocean-atmosphere system at short time scales impacting the El Niño–Southern Oscillation (ENSO). It is shown that the variability of wind and atmospheric pressure over the Antarctic Circumpolar Current (ACC), together with the effects of the topography and coastline, significantly impact the development of ENSO events. A new paradigm for ENSO is proposed that allows explaining the current weakening of the interrelation between the variability in wind and water volume in the tropical warm pool in the western equatorial Pacific and the onset of ENSO. The weakness of the interrelationship between ENSO and variability in the equatorial warm water volume of the equatorial Pacific, together with wind variability in the western equatorial Pacific, can be explained by the fact that the process occurred in the Southern Ocean recently became a major contributor amplifying ENSO events. The reproduction in numerical models of ocean dynamics for the mechanism found can improve the accuracy of the forecast of El Niño events.
    VL  - 8
    IS  - 2
    ER  - 

    Copy | Download

Author Information
  • Department of Meteorology, University of Reading, Reading, UK

  • Sections