The estimation of actual crop evapotranspiration (ETa) maps using complex equations and remotely sensed shortwave and thermal infrared imagery can be challenging and may require input data that are not available. There is an opportunity, therefore to create a simpler and faster method to generate ETa maps using fewer input parameters for situations where limited input data is available or greater uncertainty in the resulting ET estimates are acceptable. We compared the estimates of ETa produced by a crop coefficient and NDVI-based (Kc-NDVI) method to a full energy balance (EB) method. Clear sky images from Landsat 7 and Landsat 8 were processed and used for the ETa estimations from maize during two growing seasons in eastern South Dakota, USA. The results showed that the ETa values from the Kc-NDVI method were lower than the ETa values from the EB method by 18% for 2015 and 11% for 2016 growing season. During study period the accuracy of ETa estimation decreased 17% with the Kc-NDVI method. For both years the mean bias error was 0.81 mm day-1 and the root mean square error (RMSE) was 0.37 mm day-1. The average daily ETa of 5.3 mm day-1. The Kc-NDVI method performed acceptable for ETa estimations, indicating that this method can be used to estimate ETa with minimum input parameters at focused regional and field scales for short time periods.
Published in | Earth Sciences (Volume 7, Issue 5) |
DOI | 10.11648/j.earth.20180705.14 |
Page(s) | 227-235 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2018. Published by Science Publishing Group |
Actual Evapotranspiration, Surface Energy Balance, NDV Crop Coefficient
[1] | Garatuza-Payan, J., & Watts, C. J. (2005). The use of remote sensing for estimating ET of irrigated wheat and cotton in Northwest Mexico. Irrigation and Drainage Systems, 19(3), 301. doi:10.1007/s10795-005-5192-2. |
[2] | Hanson, R. L. (1991). Evapotranspiration and Droughts. In: Paulson RW, Chase EB, Roberts RS, Moody DW, Compilers, National Water Summary 1988-89-hydrologic events and floods and droughts: U.S. Geological Survey Water Supply (2375), 99-104. |
[3] | Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. FAO, Rome, 300(9), D05109. |
[4] | George, B. A., Reddy, B., Raghuwanshi, N., & Wallender, W. (2002). Decision support system for estimating reference evapotranspiration. Journal of Irrigation and Drainage Engineering, 128(1), 1-10. |
[5] | Jensen, M. E., Burman, R. D., & Allen, R. G. (1990). Evapotranspiration and irrigation water requirements, ASCE Manuals and Reports on Engineering Practice No. 70, 332pp. |
[6] | ASCE-EWRI. (2005). The ASCE standardized reference evapotranspiration equation; ASCE-EWRI Standardization of Reference Evapotranspiration Task Committee Report; ASCE: Reston, VA, USA. |
[7] | Jensen, M. E., & Allen, R. G. (2016). Evaporation, Evapotranspiration, and Irrigation Water Requirements. ASCE Manuals and Reports on Engineering Practice No. 70, 744pp. |
[8] | Gowda, P. H., Chavez, J. L., Colaizzi, P. D., Evett, S. R., Howell, T. A., & Tolk, J. A. (2008). ET mapping for agricultural water management: present status and challenges. Irrigation Science, 26(3), 223-237. |
[9] | Allen, R. G., Pereira, L. S., Howell, T. A., & Jensen, M. E. (2011b). Evapotranspiration information reporting: I. Factors governing measurement accuracy. Agricultural Water Management, 98(6), 899-920. |
[10] | Santos, C., Lorite, I., Tasumi, M., Allen, R., & Fereres, E. (2008). Integrating satellite-based evapotranspiration with simulation models for irrigation management at the scheme level. Irrigation Science, 26(3), 277-288. |
[11] | Irmak, A., Ratcliffe, I., Ranade, P., Hubbard, K. G., Singh, R. K., Kamble, B., & Kjaersgaard, J. (2011). Estimation of land surface evapotranspiration with a satellite remote sensing procedure. Great plains research, 73-88. |
[12] | Allen, R. G., Tasumi, M., Morse, A., Trezza, R., Wright, J. L., Bastiaanssen, W., Robison, C. W. (2007b). Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC)—Applications. Journal of Irrigation and Drainage Engineering, 133(4), 395-406. |
[13] | Allen, R., Irmak, A., Trezza, R., Hendrickx, J. M., Bastiaanssen, W., & Kjaersgaard, J. (2011a). Satellite‐based ET estimation in agriculture using SEBAL and METRIC. Hydrological Processes, 25(26), 4011-4027. |
[14] | Kjaersgaard, J., Allen, R., & Irmak, A. (2011). Improved methods for estimating monthly and growing season ET using METRIC applied to moderate resolution satellite imagery. Hydrological Processes, 25(26), 4028-4036. |
[15] | Allen, R. G., Tasumi, M., & Trezza, R. (2007a). Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC)—Model. Journal of Irrigation and Drainage Engineering, 133(4), 380-394. |
[16] | Tasumi, M., Allen, R. G., Trezza, R., & Wright, J. L. (2005). Satellite-based energy balance to assess within-population variance of crop coefficient curves. Journal of Irrigation and Drainage Engineering, 131(1), 94-109. |
[17] | Chavez, J. L., Gowda, P. H., Howell, T. A., Marek, T. H., & New, L. L. (2007). Evapotranspiration mapping using METRICTM for a region with highly advective conditions. Paper presented at the 2007 ASABE Annual International Meeting, Technical Papers. |
[18] | French, A. N., Hunsaker, D. J., & Thorp, K. R. (2015). Remote sensing of evapotranspiration over cotton using the TSEB and METRIC energy balance models. Remote Sensing of Environment, 158, 281-294. |
[19] | Droogers, P., Immerzeel, W., & Lorite, I. (2010). Estimating actual irrigation application by remotely sensed evapotranspiration observations. Agricultural Water Management, 97(9), 1351-1359. |
[20] | Folhes, M. T., Rennó, C. D., & Soares, J. V. (2009). Remote sensing for irrigation water management in the semi-arid Northeast of Brazil. Agricultural Water Management, 96(10), 1398-1408. |
[21] | Choi, M., Kustas, W. P., Anderson, M. C., Allen, R. G., Li, F., & Kjaersgaard, J. H. (2009). An intercomparison of three remote sensing-based surface energy balance algorithms over a corn and soybean production region (Iowa, US) during SMACEX. Agricultural and Forest Meteorology, 149(12), 2082-2097. |
[22] | Singh, R. K., & Irmak, A. (2009). Estimation of crop coefficients using satellite remote sensing. Journal of Irrigation and Drainage Engineering, 135(5), 597-608. |
[23] | Hankerson, B., Kjaersgaard, J., & Hay, C. (2012). Estimation of evapotranspiration from fields with and without cover crops using remote sensing and in situ methods. Remote Sensing, 4(12), 3796-3812. |
[24] | Mkhwanazi, M., & Chávez, J. L. (2012). Using METRIC to estimate surface energy fluxes over an alfalfa field in Eastern Colorado. Hydrology Days, Colorado State University USA (Accessed on August 26th 2014 from: http:// hydrologydays. colostate.edu/Papers_2012/Mcebisi_paper. pdf). |
[25] | Mokhtari, M., Ahmad, B., Hoveidi, H., & Busu, I. (2013). Sensitivity analysis of METRIC–based evapotranspiration algorithm. International Journal of Environmental Research, 7(2), 407-422. |
[26] | Carrasco-Benavides, M., Ortega-Farías, S., Lagos, L. O., Kleissl, J., Morales-Salinas, L., & Kilic, A. (2014). Parameterization of the Satellite-Based Model (METRIC) for the estimation of instantaneous surface energy balance components over a drip-irrigated vineyard. Remote Sensing, 6(11), 11342-11371. |
[27] | Gordillo Salinas, V. M., Flores Magdaleno, H., Tijerina Chávez, L., & Arteaga Ramírez, R. (2014). Estimación de la evapotranspiración utilizando un balance de energía e imágenes satelitales. Revista mexicana de ciencias agrícolas, 5(1), 143-155. |
[28] | Paço, T. A., Pôças, I., Cunha, M., Silvestre, J. C., Santos, F. L., Paredes, P., & Pereira, L. S. (2014). Evapotranspiration and crop coefficients for a super intensive olive orchard. An application of SIMDualKc and METRIC models using ground and satellite observations. Journal of Hydrology, 519, 2067-2080. |
[29] | Zhang, H., Anderson, R. G., & Wang, D. (2015). Satellite-based crop coefficient and regional water use estimates for Hawaiian sugarcane. Field Crops Research, 180, 143-154. |
[30] | Numata, I., Khand, K., Kjaersgaard, J., Cochrane, M. A., & Silva, S. S. (2017). Evaluation of Landsat-Based METRIC Modeling to Provide High-Spatial Resolution Evapotranspiration Estimates for Amazonian Forests. Remote Sensing, 9(1), 46. |
[31] | Rouse Jr, J. W., Haas, R., Schell, J., & Deering, D. (1974). Monitoring vegetation systems in the Great Plains with ERTS. |
[32] | Glenn, E. P., Neale, C. M., Hunsaker, D. J., & Nagler, P. L. (2011). Vegetation index‐based crop coefficients to estimate evapotranspiration by remote sensing in agricultural and natural ecosystems. Hydrological Processes, 25(26), 4050-4062. |
[33] | Rafn, E. B., Contor, B., & Ames, D. P. (2008). Evaluation of a method for estimating irrigated crop-evapotranspiration coefficients from remotely sensed data in Idaho. Journal of Irrigation and Drainage Engineering, 134(6), 722-729. |
[34] | Gontia, N. K., & Tiwari, K. N. (2010). Estimation of crop coefficient and evapotranspiration of wheat (Triticum aestivum) in an irrigation command using remote sensing and GIS. Water resources management, 24(7), 1399-1414. |
[35] | Wright, J. L. (1982). New evapotranspiration crop coefficients. Proceedings of the American Society of Civil Engineers, Journal of the Irrigation and Drainage Division, 108(IR2), 57-74. |
[36] | Neale, C. M., Bausch, W. C., & Heerman, D. (1989). Development of reflectance-based crop coefficients for corn. Trans. ASAE, 32(6), 1891-1899. |
[37] | Bausch, W. C. (1995). Remote sensing of crop coefficients for improving the irrigation scheduling of corn. Agricultural Water Management, 27(1), 55-68. |
[38] | Garatuza-Payan, J., Tamayo, A., Watts, C., & Rodríguez, J. C. (2003). Estimating large area wheat evapotranspiration from remote sensing data. Paper presented at the Geoscience and Remote Sensing Symposium, 2003. IGARSS'03. Proceedings. 2003 IEEE International. |
[39] | Hunsaker, D. J., Pinter Jr, P. J., Barnes, E. M., & Kimball, B. A. (2003). Estimating cotton evapotranspiration crop coefficients with a multispectral vegetation index. Irrigation Science, 22(2), 95-104. |
[40] | Hunsaker, D. J., Pinter, P. J., & Kimball, B. A. (2005). Wheat basal crop coefficients determined by normalized difference vegetation index. Irrigation Science, 24(1), 1-14. |
[41] | Duchemin, B., Hadria, R., Erraki, S., Boulet, G., Maisongrande, P., Chehbouni, A.,... Kharrou, M. (2006). Monitoring wheat phenology and irrigation in Central Morocco: On the use of relationships between evapotranspiration, crops coefficients, leaf area index and remotely-sensed vegetation indices. Agricultural Water Management, 79(1), 1-27. |
[42] | Jayanthi, H., Neale, C. M., & Wright, J. L. (2007). Development and validation of canopy reflectance-based crop coefficient for potato. Agricultural Water Management, 88(1), 235-246. |
[43] | Trout, T. J., Johnson, L. F., & Gartung, J. (2008). Remote sensing of canopy cover in horticultural crops. HortScience, 43(2), 333-337. |
[44] | González-Dugo, M., & Mateos, L. (2008). Spectral vegetation indices for benchmarking water productivity of irrigated cotton and sugarbeet crops. Agricultural Water Management, 95(1), 48-58. |
[45] | Campos, I., Neale, C. M., Calera, A., Balbontín, C., & González-Piqueras, J. (2010). Assessing satellite-based basal crop coefficients for irrigated grapes (Vitis vinifera L.). Agricultural Water Management, 98(1), 45-54. |
[46] | Er-Raki, S., Rodriguez, J., Garatuza-Payan, J., Watts, C., & Chehbouni, A. (2013). Determination of crop evapotranspiration of table grapes in a semi-arid region of Northwest Mexico using multi-spectral vegetation index. Agricultural Water Management, 122, 12-19. |
[47] | Pôças, I., Paço, T. A., Paredes, P., Cunha, M., & Pereira, L. S. (2015). Estimation of actual crop coefficients using remotely sensed vegetation indices and soil water balance modelled data. Remote Sensing, 7(3), 2373-2400. |
[48] | Reyes-Gonzalez, A., Hay, C., Kjaersgaard, J., & Neale, C. (2015). Use of Remote Sensing to Generate Crop Coefficient and Estimate Actual Crop Evapotranspiration. Paper presented at the 2015 ASABE Annual International Meeting. |
[49] | Reyes-González, A., Trooien, T., Kjaersgaard, J., Hay, C., & Reta-Sánchez, D. G. (2016). Development of Crop Coefficients Using Remote Sensing-Based Vegetation Index and Growing Degree Days. Paper presented at the 2016 ASABE Annual International Meeting. |
[50] | Neale, C. M., Jayanthi, H., & Wright, J. L. (2005). Irrigation water management using high resolution airborne remote sensing. Irrigation and Drainage Systems, 19(3), 321-336. |
[51] | Barbagallo, S., Consoli, S., & Russo, A. (2009). A one-layer satellite surface energy balance for estimating evapotranspiration rates and crop water stress indexes. Sensors, 9(1), 1-21. |
[52] | Yebra, M., Van Dijk, A., Leuning, R., Huete, A., & Guerschman, J. P. (2013). Evaluation of optical remote sensing to estimate actual evapotranspiration and canopy conductance. Remote Sensing of Environment, 129, 250-261. |
[53] | Morton, C. G., Huntington, J. L., Pohll, G. M., Allen, R. G., McGwire, K. C., & Bassett, S. D. (2013). Assessing calibration uncertainty and automation for estimating evapotranspiration from agricultural areas using METRIC. JAWRA Journal of the American Water Resources Association, 49(3), 549-562. |
[54] | Kjaersgaard, J., & Allen, R. (2010). Remote sensing technology to produce consumptive water use maps for the Nebraska Panhandle. Final completion report submitted to the University of Nebraska, 60. |
[55] | Reyes-Gonzalez, A., Kjaersgaard, J., Trooien, T., Hay, C. and Ahiablame, L. (2017). Comparative analysis of METRIC model and atmometer methods for estimating actual evapotranspiration, International Journal of Agronomy, (2017), 1-16. |
[56] | Allen, R., Trezza, R., Tasumi, M., & Kjaersgaard, J. (2014). METRIC: Mapping Evapotranspiration at High Resolution Using Internalized Calibration Applications Manual for Landsat Satellite Imagery., V 3.0, 279. |
[57] | Bausch, W. C. (1993). Soil background effects on reflectance-based crop coefficients for corn. Remote Sensing of Environment, 46(2), 213-222. |
[58] | Bannari, A., Morin, D., Bonn, F., & Huete, A. (1995). A review of vegetation indices. Remote sensing reviews, 13(1-2), 95-120. |
[59] | Anderson, M. C., Allen, R. G., Morse, A., & Kustas, W. P. (2012). Use of Landsat thermal imagery in monitoring evapotranspiration and managing water resources. Remote Sensing of Environment, 122, 50-65. doi:http://dx.doi.org/10.1016/j.rse.2011.08.025. |
APA Style
Arturo Reyes-González, Jeppe Kjaersgaard, Todd Trooien, Christopher Hay, Laurent Ahiablame. (2018). Assessing Accuracy of Vegetation Index Method to Estimate Actual Evapotranspiration. Earth Sciences, 7(5), 227-235. https://doi.org/10.11648/j.earth.20180705.14
ACS Style
Arturo Reyes-González; Jeppe Kjaersgaard; Todd Trooien; Christopher Hay; Laurent Ahiablame. Assessing Accuracy of Vegetation Index Method to Estimate Actual Evapotranspiration. Earth Sci. 2018, 7(5), 227-235. doi: 10.11648/j.earth.20180705.14
AMA Style
Arturo Reyes-González, Jeppe Kjaersgaard, Todd Trooien, Christopher Hay, Laurent Ahiablame. Assessing Accuracy of Vegetation Index Method to Estimate Actual Evapotranspiration. Earth Sci. 2018;7(5):227-235. doi: 10.11648/j.earth.20180705.14
@article{10.11648/j.earth.20180705.14, author = {Arturo Reyes-González and Jeppe Kjaersgaard and Todd Trooien and Christopher Hay and Laurent Ahiablame}, title = {Assessing Accuracy of Vegetation Index Method to Estimate Actual Evapotranspiration}, journal = {Earth Sciences}, volume = {7}, number = {5}, pages = {227-235}, doi = {10.11648/j.earth.20180705.14}, url = {https://doi.org/10.11648/j.earth.20180705.14}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.earth.20180705.14}, abstract = {The estimation of actual crop evapotranspiration (ETa) maps using complex equations and remotely sensed shortwave and thermal infrared imagery can be challenging and may require input data that are not available. There is an opportunity, therefore to create a simpler and faster method to generate ETa maps using fewer input parameters for situations where limited input data is available or greater uncertainty in the resulting ET estimates are acceptable. We compared the estimates of ETa produced by a crop coefficient and NDVI-based (Kc-NDVI) method to a full energy balance (EB) method. Clear sky images from Landsat 7 and Landsat 8 were processed and used for the ETa estimations from maize during two growing seasons in eastern South Dakota, USA. The results showed that the ETa values from the Kc-NDVI method were lower than the ETa values from the EB method by 18% for 2015 and 11% for 2016 growing season. During study period the accuracy of ETa estimation decreased 17% with the Kc-NDVI method. For both years the mean bias error was 0.81 mm day-1 and the root mean square error (RMSE) was 0.37 mm day-1. The average daily ETa of 5.3 mm day-1. The Kc-NDVI method performed acceptable for ETa estimations, indicating that this method can be used to estimate ETa with minimum input parameters at focused regional and field scales for short time periods.}, year = {2018} }
TY - JOUR T1 - Assessing Accuracy of Vegetation Index Method to Estimate Actual Evapotranspiration AU - Arturo Reyes-González AU - Jeppe Kjaersgaard AU - Todd Trooien AU - Christopher Hay AU - Laurent Ahiablame Y1 - 2018/10/11 PY - 2018 N1 - https://doi.org/10.11648/j.earth.20180705.14 DO - 10.11648/j.earth.20180705.14 T2 - Earth Sciences JF - Earth Sciences JO - Earth Sciences SP - 227 EP - 235 PB - Science Publishing Group SN - 2328-5982 UR - https://doi.org/10.11648/j.earth.20180705.14 AB - The estimation of actual crop evapotranspiration (ETa) maps using complex equations and remotely sensed shortwave and thermal infrared imagery can be challenging and may require input data that are not available. There is an opportunity, therefore to create a simpler and faster method to generate ETa maps using fewer input parameters for situations where limited input data is available or greater uncertainty in the resulting ET estimates are acceptable. We compared the estimates of ETa produced by a crop coefficient and NDVI-based (Kc-NDVI) method to a full energy balance (EB) method. Clear sky images from Landsat 7 and Landsat 8 were processed and used for the ETa estimations from maize during two growing seasons in eastern South Dakota, USA. The results showed that the ETa values from the Kc-NDVI method were lower than the ETa values from the EB method by 18% for 2015 and 11% for 2016 growing season. During study period the accuracy of ETa estimation decreased 17% with the Kc-NDVI method. For both years the mean bias error was 0.81 mm day-1 and the root mean square error (RMSE) was 0.37 mm day-1. The average daily ETa of 5.3 mm day-1. The Kc-NDVI method performed acceptable for ETa estimations, indicating that this method can be used to estimate ETa with minimum input parameters at focused regional and field scales for short time periods. VL - 7 IS - 5 ER -