One of the most important criteria for the stability of electrical networks, is the frequency of the voltage produced. This frequency is subjected to the hazards of the load connected to the turbo generator group. Indeed, the balance of the frequency results from the balance between active power produced by the turbo alternator group and power demanded by the load connected to the network. This paper presents a comparative study of three methods of regulation to solve the problem of frequency fluctuations in hydroelectric plants: modified Proportional–Integral–Derivative (PID) control, Internal Model Control (IMC) and Infinite Horizon (H∞) Control. Simulation model in the presence of these has been established in Matlab / Simulink. The results of the simulation have subsequently revealed their robustness, which demonstrates once again their reliability.
Published in | Control Science and Engineering (Volume 2, Issue 1) |
DOI | 10.11648/j.cse.20180201.12 |
Page(s) | 16-26 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2019. Published by Science Publishing Group |
Electrical Network, Frequency, Modified PID Control, Internal Model Control, Infinite Horizon Control
[1] | Matei Vinatoru, Eugen Iancu, Camelia Maican, and Gabriela Canureci. Control System for Kaplan Hydro-Turbine. 4th WSEAS/IASME International Conference on dynamical systems and control, Corfu, Greece, October 26-28, 2008. |
[2] | IEEE Committee Report, Hydraulic Turbine and Turbine Control Models for System Dynamic Studies, IEEE Transaction on Power Systems, vol. 7, no. 1, pp. 167-179, Febuary 1992. |
[3] | Ayele Nigussie Legesse, Mengesha Mamo. Application of a Stepper Motor tothe Frequency Control of a Mini Hydropower Plant.Electrical and Power Engineering Frontier, Sep. 2013, Vol. 2 Iss. 3, PP. 59-63. |
[4] | Hannet L. N., Fardanesh B., Field test to validate hydroturbine-governor model structure and parameters, IEEE Transaction on Power Systems, vol. 9, 1994, pp. 1744-1751. |
[5] | Arnaurovic D.B., Skataric D.M, Suboptimal design of Hydroturbine governors, IEEE Transactions on energy Conversion, Vol. 6/3, 1991. |
[6] | Jin Z., Manisa P., Saifur R., Xu L. A Frequency Regulation Framework for Hydro Plants to Mitigate Wind Penetration Challenges. IEEE Transaction on Sustainable Energy. 2016. |
[7] | Ghazanfar S. Power System Stabilizer Application for load Frequency Control in Hydro-Electric Power Plant. International Journal of theoretical and Applied Mathematics. Vol.3, No.4, 2017, pp 148-157. |
[8] | Anaza S. 0., Abdulazeez M. S., Yisah Y. A., Yusuf Y. O., Salawu B. U, Momoh S. U. Micro Hydro-Electric Energy Generation – An Overview. American Journal of Engineering Reseach (AJER), Vol. 6, 2017, pp 05-12 |
[9] | Zohra Zidane, Mustapha Ait Lafkih, Mohamed Ramzi. Application of Multivariable Predictive Control in a Hydropower Plant. Journal of Automation and Control, 2013, Vol. 1, No. 1, 26-33, Received February 07, 2013; Revised November 12, 2013; Accepted December 20, 2013. |
[10] | S. Boyd and C. Barrat. Linear Controller Design: Limits of Performance. Prentice Hall, 1991. |
[11] | A.Yeremou Tamtsia, J.M. Nyobe Yome, G. M. Ngaleu, J. C. Ndzana. Contrôle de la fréquence dans une centrale de production d’énergie électrique. Sciences, Technologies et Développement, Edition spéciale, ISSN 1029 – 2225 - e - ISSN 2313 – 6278, pp39-44, Juillet 2016. |
[12] | LE Hoang Bao, "Contribution aux méthodes de synthèse de correcteurs d’ordres réduits sous contraintes de robustesse et aux méthodes de réduction de modèles pour la synthèse robuste en boucle fermée". PhD thesis. Institut National Polytechnique de Grenoble - INPG, 2010. |
[13] | L. Harnefors, H. Nee, Robust Current Control of AC Machines Using The Internal Model Control Method, Automatica, Vol.38, no. 12, p.2103-2109, 2005. |
[14] | Guolian H., Yuzhao H., Huan D., Jianhua Z. Xiaobin Z. Design of Internal Model Controller Based on ITAE Index and Its Application in Boiler Combustion Control System. IEEE 12th ICIEA. 2017: 2078-2083. |
[15] | Nian L., Feng W., Yu Y. Design and Simulation Analysis for An Internal Model Controller of Speed Loop. IEEE 29th CCDC. 2017: 5056-5059. |
[16] | L. Saidi, “Commande à modèle interne : Inversion et équivalence structurelle”, Thèse de doctorat, Université de Savoie, 1996. |
[17] | G. C. Goodwin, S. F. Grabe, W. S. Levine, Internal model control of linear systems with saturating actuators. Proceedings of the Europeen control conference, Groningen, pays-bas, pp. 1072-1077, 1993. |
[18] | Djamel Eddine Ghouraf, Abdellatif Naceri. Commande robuste H∞ optimisée par l’algorithme génétique appliqué à la régulation automatique d’excitation des générateurs synchrones puissants (Application sous GUI/MATLAB), Nature & Technologie. A- Sciences fondamentales et Engineering, n° 14, Pp 02-12 Janvier 2016. |
[19] | Mohamed Tafraouti. Contribution à la commande de systèmes électrohydrauliques : PhD thesis. Université Henry poincaré-Nancy I, 2006. |
[20] | Djamel Eddine Ghouraf, Abdellatif Naceri. Application de la commande robuste H∞ dans le contrôle automatique d’excitation des générateurs synchrones puissants (application sous GUI/MATLAB), Mediamira Science Publisher, Volume 53, Number 3, pp.211-217, 2012. Manuscript recieved June 7, 2012. |
[21] | C. Charbonnel. H∞ controller design and μ-analysis: Powerful tools for flexible satellite attitude control. In AIAA Guidance, Navigation, and Control Conference, Toronto, Canada, 2010. |
[22] | L. Saidi, Z. Dibi, & M. Mokhtari, "Elaboration d’une méthode d’inversion de modèles dans l’espace d’état ». Première conférence internationale sur les systèmes électroniques, pp.1-4, Batna, Algérie, 2005. |
APA Style
Korassaï, Yeremou Tamtsia Aurelien, Haman Djalo, Ngaleu Gildas Martial, Ndzana Jean Calvin. (2019). Comparative Analysis of PID, IMC, Infinite H Controllers for Frequency Control in Hydroelectric Plants. Control Science and Engineering, 2(1), 16-26. https://doi.org/10.11648/j.cse.20180201.12
ACS Style
Korassaï; Yeremou Tamtsia Aurelien; Haman Djalo; Ngaleu Gildas Martial; Ndzana Jean Calvin. Comparative Analysis of PID, IMC, Infinite H Controllers for Frequency Control in Hydroelectric Plants. Control Sci. Eng. 2019, 2(1), 16-26. doi: 10.11648/j.cse.20180201.12
@article{10.11648/j.cse.20180201.12, author = {Korassaï and Yeremou Tamtsia Aurelien and Haman Djalo and Ngaleu Gildas Martial and Ndzana Jean Calvin}, title = {Comparative Analysis of PID, IMC, Infinite H Controllers for Frequency Control in Hydroelectric Plants}, journal = {Control Science and Engineering}, volume = {2}, number = {1}, pages = {16-26}, doi = {10.11648/j.cse.20180201.12}, url = {https://doi.org/10.11648/j.cse.20180201.12}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.cse.20180201.12}, abstract = {One of the most important criteria for the stability of electrical networks, is the frequency of the voltage produced. This frequency is subjected to the hazards of the load connected to the turbo generator group. Indeed, the balance of the frequency results from the balance between active power produced by the turbo alternator group and power demanded by the load connected to the network. This paper presents a comparative study of three methods of regulation to solve the problem of frequency fluctuations in hydroelectric plants: modified Proportional–Integral–Derivative (PID) control, Internal Model Control (IMC) and Infinite Horizon (H∞) Control. Simulation model in the presence of these has been established in Matlab / Simulink. The results of the simulation have subsequently revealed their robustness, which demonstrates once again their reliability.}, year = {2019} }
TY - JOUR T1 - Comparative Analysis of PID, IMC, Infinite H Controllers for Frequency Control in Hydroelectric Plants AU - Korassaï AU - Yeremou Tamtsia Aurelien AU - Haman Djalo AU - Ngaleu Gildas Martial AU - Ndzana Jean Calvin Y1 - 2019/01/14 PY - 2019 N1 - https://doi.org/10.11648/j.cse.20180201.12 DO - 10.11648/j.cse.20180201.12 T2 - Control Science and Engineering JF - Control Science and Engineering JO - Control Science and Engineering SP - 16 EP - 26 PB - Science Publishing Group SN - 2994-7421 UR - https://doi.org/10.11648/j.cse.20180201.12 AB - One of the most important criteria for the stability of electrical networks, is the frequency of the voltage produced. This frequency is subjected to the hazards of the load connected to the turbo generator group. Indeed, the balance of the frequency results from the balance between active power produced by the turbo alternator group and power demanded by the load connected to the network. This paper presents a comparative study of three methods of regulation to solve the problem of frequency fluctuations in hydroelectric plants: modified Proportional–Integral–Derivative (PID) control, Internal Model Control (IMC) and Infinite Horizon (H∞) Control. Simulation model in the presence of these has been established in Matlab / Simulink. The results of the simulation have subsequently revealed their robustness, which demonstrates once again their reliability. VL - 2 IS - 1 ER -