| Peer-Reviewed

Numerical Simulation of Flow Processes in Extrusion Tools for Partly Crosslinked and Highly Filled Plastic Melts

Received: 22 October 2018     Accepted: 1 February 2019     Published: 28 February 2019
Views:       Downloads:
Abstract

The complex flow behaviour of partly crosslinked or highly filled polymer melts will be described with a new heuristic flow law, which takes into account the pseudoplastic flow behaviour in the regime of the viscosity curve for low and for high shear rates. The CARPOW law is a combination of the often used power and Carreau law. It describes the flow behaviour of partly crosslinked or highly filled polymer melts for the shear rate ranges in extrusion and injection molding tools. The evaluation and the presentation of the rotational and the capillary rheometrical viscosity measurements are detailed described. For highly filled or for partly crosslinked plastic melts a new defined consistency parameter is defined. It characterizes the flow obstruction in the CARPOW law. Further the temperature invariant representation of the CARPOW law is shown. This new flow law is applied for a partly crosslinked and a highly filled polymer system. The design of the extrusion tools should consider the flow behaviour described by the CARPOW law. Only with this flow law the design of tooling in the case of partly crosslinked or highly filled polymer melts is correct. Two praxis relevant examples demonstrate the calculation for an extrusion die using this new flow law.

Published in Composite Materials (Volume 3, Issue 1)
DOI 10.11648/j.cm.20190301.12
Page(s) 9-21
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2019. Published by Science Publishing Group

Keywords

Shear Flow, Heuristic Flow Law, Parameter Identification, Flow Obstruction, Extrusion Dies, Numerical Flow Simulation, Dynamic Crosslinked Thermoplastic Elastomers, Wood Plastic Compounds

References
[1] Ostwald, W., Über die Geschwindigkeitsfunktion der Viskosität disperser Systeme, Kolloid-Z. 36, (1925), S.99-117.
[2] Münstedt, H., Viskositätsdaten von Kunststoffen, Kunststoffe 68, Nr. 2, (1978), S. 92-98.
[3] Carreau, P. J., Rheological equations from molecular network theories, Dissertation University of Wisconsin, (1968), DOI: 10.1122/1.549276.
[4] Fritz, H. G., Geiger, K., Rheologische, thermodynamische und tribologische Grundlagen, Stoffgesetze, Daten für die Auslegung von Extrudern, Handbuch der Extrudertechnik,.Herausgeber: F. Hensen, W. Knappe und H. Potente, Carl-Hanser-Verlag, München, (1989), S. 14-77.
[5] Geiger, K., Kühnle, H., Analytische Berechnung einfacher Scherströmungen aufgrund eines Fließansatzes von Carreauschem Typ, Rheol. Acta, 23, (1984), S. 355-367.
[6] N. N., Softwarepaket MATLAB, Mathworks Inc., (2014).
[7] Rabinowitsch, B., Über die Viskosität und Elastizität von Solen, Z. Phys. Chem., 145, (1929), S. 1-27.
[8] Anderlik, R., Fritz, H. G., Compounding of Thermoplastic Elastomers using Organosilanes, Intern. Polymer Processing VII, 3, 1992, S. 212-217, DOI: 10.3139/217.920212.
[9] Cox, W. P., Merz, E. H., Correlation of Dynamic and Steady Flow Viscosities, J. Polym. Sci., 28, (1958), S. 619-622, DOI: 10.1002/pol.1958.1202811812.
[10] Geiger, K., Martin, G. A., Sobotta, A., Relaxationszonen in Werkzeugen, Kunststoffe, 6, (2011). S. 44-49.
[11] Geiger, K., Ein neues heuristisches Fließgesetz, 21. Stuttgarter Kunststoff-Kolloquium, 2009, 3/V4, S. 1-15.
[12] Perdikoulias, J., Shear Stress vs. Shear Rate as Flow Channel Design Criteria, ANTEC 2017, Anaheim CA, 8.-10. Mai 2017.
[13] Musialek, M., Beitrag zur Vorhersage des Fließverhaltens hochgefüllter Kunststoffe, Dissertation, Universität Stuttgart, 2016.
[14] Mazzanti, V., Rheology of Wood Polymer Composites, Dottorato di Ricerca in “Scienze Dell’Ingegneria”, Iniversita degli Studi di Ferrara, 2018.
[15] Laufer, N., Hansmann, H., Koch, M., Rheological Characterisation of the Flow Behaviour of Wood Plastic Composites in Consideration of Different Volume Fraction of Wood, 2nd International Conference on Rheology and Modeling of Materials (IC-RMM2), IOP Conf. Series: Journal of Physics: Conf. Series 790, 2017.
[16] de Santi, C. R., Hage, E. jr., Vlachopoulos, J., Correa, C. A., Profile Extrusion of WPC’s Supported by Rheological and Simulation Data, Anais do 10° Congresso Brasileiro de Polimeros, Foz do Iguacu, 2009.
Cite This Article
  • APA Style

    Kalman Geiger, Gerhard Alfred Martin, Andreas Sobotta. (2019). Numerical Simulation of Flow Processes in Extrusion Tools for Partly Crosslinked and Highly Filled Plastic Melts. Composite Materials, 3(1), 9-21. https://doi.org/10.11648/j.cm.20190301.12

    Copy | Download

    ACS Style

    Kalman Geiger; Gerhard Alfred Martin; Andreas Sobotta. Numerical Simulation of Flow Processes in Extrusion Tools for Partly Crosslinked and Highly Filled Plastic Melts. Compos. Mater. 2019, 3(1), 9-21. doi: 10.11648/j.cm.20190301.12

    Copy | Download

    AMA Style

    Kalman Geiger, Gerhard Alfred Martin, Andreas Sobotta. Numerical Simulation of Flow Processes in Extrusion Tools for Partly Crosslinked and Highly Filled Plastic Melts. Compos Mater. 2019;3(1):9-21. doi: 10.11648/j.cm.20190301.12

    Copy | Download

  • @article{10.11648/j.cm.20190301.12,
      author = {Kalman Geiger and Gerhard Alfred Martin and Andreas Sobotta},
      title = {Numerical Simulation of Flow Processes in Extrusion Tools for Partly Crosslinked and Highly Filled Plastic Melts},
      journal = {Composite Materials},
      volume = {3},
      number = {1},
      pages = {9-21},
      doi = {10.11648/j.cm.20190301.12},
      url = {https://doi.org/10.11648/j.cm.20190301.12},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.cm.20190301.12},
      abstract = {The complex flow behaviour of partly crosslinked or highly filled polymer melts will be described with a new heuristic flow law, which takes into account the pseudoplastic flow behaviour in the regime of the viscosity curve for low and for high shear rates. The CARPOW law is a combination of the often used power and Carreau law. It describes the flow behaviour of partly crosslinked or highly filled polymer melts for the shear rate ranges in extrusion and injection molding tools. The evaluation and the presentation of the rotational and the capillary rheometrical viscosity measurements are detailed described. For highly filled or for partly crosslinked plastic melts a new defined consistency parameter is defined. It characterizes the flow obstruction in the CARPOW law. Further the temperature invariant representation of the CARPOW law is shown. This new flow law is applied for a partly crosslinked and a highly filled polymer system. The design of the extrusion tools should consider the flow behaviour described by the CARPOW law. Only with this flow law the design of tooling in the case of partly crosslinked or highly filled polymer melts is correct. Two praxis relevant examples demonstrate the calculation for an extrusion die using this new flow law.},
     year = {2019}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Numerical Simulation of Flow Processes in Extrusion Tools for Partly Crosslinked and Highly Filled Plastic Melts
    AU  - Kalman Geiger
    AU  - Gerhard Alfred Martin
    AU  - Andreas Sobotta
    Y1  - 2019/02/28
    PY  - 2019
    N1  - https://doi.org/10.11648/j.cm.20190301.12
    DO  - 10.11648/j.cm.20190301.12
    T2  - Composite Materials
    JF  - Composite Materials
    JO  - Composite Materials
    SP  - 9
    EP  - 21
    PB  - Science Publishing Group
    SN  - 2994-7103
    UR  - https://doi.org/10.11648/j.cm.20190301.12
    AB  - The complex flow behaviour of partly crosslinked or highly filled polymer melts will be described with a new heuristic flow law, which takes into account the pseudoplastic flow behaviour in the regime of the viscosity curve for low and for high shear rates. The CARPOW law is a combination of the often used power and Carreau law. It describes the flow behaviour of partly crosslinked or highly filled polymer melts for the shear rate ranges in extrusion and injection molding tools. The evaluation and the presentation of the rotational and the capillary rheometrical viscosity measurements are detailed described. For highly filled or for partly crosslinked plastic melts a new defined consistency parameter is defined. It characterizes the flow obstruction in the CARPOW law. Further the temperature invariant representation of the CARPOW law is shown. This new flow law is applied for a partly crosslinked and a highly filled polymer system. The design of the extrusion tools should consider the flow behaviour described by the CARPOW law. Only with this flow law the design of tooling in the case of partly crosslinked or highly filled polymer melts is correct. Two praxis relevant examples demonstrate the calculation for an extrusion die using this new flow law.
    VL  - 3
    IS  - 1
    ER  - 

    Copy | Download

Author Information
  • Institute for Plastic Technology (IKT), University of Stuttgart, Stuttgart, Germany

  • Plastic Process Technology Dr.-Ing. Martin GmbH, Nürnberg, Germany

  • Ingenieur Office for Numerical Optimization Methods INO, Aachen, Germany

  • Sections