| Peer-Reviewed

Pumping Pressure Estimation Using Famous Turbulent Fluid Mechanics Equations Through Python Simulations

Received: 21 September 2019     Accepted: 23 June 2020     Published: 8 September 2020
Views:       Downloads:
Abstract

One of the most important tasks when designing a pumping system is for the engineer or specialist to know the components to be used including the pumps. Knowledge about the project helps to achieve a more economical system with less risk of failure. One of these failures may result in the insertion of a pump that does not generate the proper pressure, causing the system not to function as designed. To know the pumping pressure in a system containing one pump, one long pipe and one reservoir, it is necessary to know which are the possible equations that could calculate the friction factor f more accurately to obtain the pressure. The main equation used in the turbulent regime, where Reynolds number Re (Re> 4,000), is the Colebrook equation and it is a nonlinear equation and it requires numerical programs to calculate the factor friction. Other equations are apparently simpler to employ, but are limited by the Reynolds Re number and / or the relative roughness. The purpose of this paper is to know which of the famous equations in the turbulent regime - Haaland, Blasius, Prandtl, von Karman - could be used to design a bomb when confronted with the calculations obtained by the Colebrook equation. The simulations were programmed in Python and the pumping pressure values and the error percentage were compared.

Published in American Journal of Mechanical and Industrial Engineering (Volume 5, Issue 4)
DOI 10.11648/j.ajmie.20200504.11
Page(s) 53-58
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2020. Published by Science Publishing Group

Keywords

Fluid Mechanics, Pumping, Colebrook, Turbulent Regime, Python

References
[1] MENEZES, Nilo Ney Coutinho. Introdução à programação Python. Algoritmos e lógica de programação para iniciantes. Novatec. 2010.
[2] COSTA, Daniel Gouveia. Administração de redes com scripts. Bash Script, Python e VBScript. Brasport. 2 ed. 2010.
[3] COELHO, Flávio Codeço. Computação Científica com Python. Uma introdução a programação para cientistas. Petrópolis, RJ. 2007.
[4] SCARPIN, Lucas Mendes; Trindade, Bruno Martins. Redimensionamento de um sistema de bombeamento de etanol para o setor de carregamento de uma usina sucroalcooleira. Revista Engenharia em Ação UniToledo. Revista Engenharia em Ação UniToledo, Araçatuba, SP, v. 01, n. 01, out./dec. 2016. pp. 116-129.
[5] FOX, Robert W; PRITCHARD, Philip J; MCDONALD Alan T. Introduction to fluids mechanics. 8ª edition. John Wiley & Sons, Inc. 2011.
[6] MUZZO, Luiz Eduardo, PINHO, Diana, LIMA, Luiz Eduardo Melo, RIBEIRO, Luís Frölén. Accuracy/Speed Analysis of Pipe Friction Factor Correlations. International Congress on Engineering and Sustainability in the XXI Century. INCREaSE, pp 664-679, 2019.
[7] GAMA, Cléber Henrique de Araújo, de SOUZA, Vladimir Caramori Borges, CALLADO, Nélia Henriques. Analysis of methodologies for determination of the economic pipe diameter. RBRH vol. 24. Porto Alegre, aug. 2019.
[8] MINHONI, Renata T. de A., PEREIRA, Francisca F. S., da SILVA, Tatiane B. G., CASTRO, Evanize R., SAAD, João C. C. The performance of explicit formulas for determining the Darcy-Weisbach friction factor. Eng. Agríc. vol. 40 no. 2 Jaboticabal, apr., 2020.
[9] COSTA, José Nilton de Abreu, de CASTRO Marco Aurélio Holanda, COSTA, Luís Henrique Magalhães, BARBOSA, João Marcelo Costa. New formula proposal for the determination of variable speed pumps efficiency. RBRH, vol. 23, Porto Alegre, 2018.
[10] TAGWI, Dayton. New Approaches to the Determination of Minor Frictional Losses in Irrigation Systems. Bioresources Engineering School of Engineering University of KwaZulu-Natal Pietermaritzburg, dec. 2018.
[11] HAMRAN K A. Simulations and measurements of friction in oscillating flow 2019 J. Phys.: Conf. Ser. 1266 012002. IOP Conf. Series: Journal of Physics: Conf. Series 1266, 2019.
[12] SOUZA, Rodrigo Pumar Alves de. Cálculos de perda de carga para seleção de uma bomba de alimentação de água de um gerador de vapor em uma unidade FPSO. Graduation project, Universidade Federal do Rio de Janeiro, Rio de Janeiro, aug. 2015.
[13] SOUZA, Pedro Henrique A. I. de. Apresentação dos cálculos para seleção de bomba para sistema de reaproveitamento deágua de poços artesianos. Graduation project, Universidade Federal do Rio de Janeiro, Rio de Janeiro, nov. 2014.
[14] ÇENGEL, Yunus A.; CIMBALA, John M. Mecânica dos fluídos fundamentos e aplicações. 3 ed. 2013.
[15] POPE, Stephen. B. Turbulent flows. Cambridge University Press. 2000.
[16] CHADWICK Andrew, MORFETT John, BORTHWICK Martin. Hydraulics in civil and environmental engineering. 5. ed. CRC Press. 2013.
[17] SINGH, Sarbit. Experiments in hydraulic engineering. Phi learning private limited. 2012.
[18] LINDEBURG R., mechanical engineering reference manual for the pe exam. 13 ed. Professional Publications. 2013.
[19] ZIEGLER, Franz. Mechanics of solids and fluids. Springer. 1991.
Cite This Article
  • APA Style

    Luciana Claudia Martins Ferreira Diogenes. (2020). Pumping Pressure Estimation Using Famous Turbulent Fluid Mechanics Equations Through Python Simulations. American Journal of Mechanical and Industrial Engineering, 5(4), 53-58. https://doi.org/10.11648/j.ajmie.20200504.11

    Copy | Download

    ACS Style

    Luciana Claudia Martins Ferreira Diogenes. Pumping Pressure Estimation Using Famous Turbulent Fluid Mechanics Equations Through Python Simulations. Am. J. Mech. Ind. Eng. 2020, 5(4), 53-58. doi: 10.11648/j.ajmie.20200504.11

    Copy | Download

    AMA Style

    Luciana Claudia Martins Ferreira Diogenes. Pumping Pressure Estimation Using Famous Turbulent Fluid Mechanics Equations Through Python Simulations. Am J Mech Ind Eng. 2020;5(4):53-58. doi: 10.11648/j.ajmie.20200504.11

    Copy | Download

  • @article{10.11648/j.ajmie.20200504.11,
      author = {Luciana Claudia Martins Ferreira Diogenes},
      title = {Pumping Pressure Estimation Using Famous Turbulent Fluid Mechanics Equations Through Python Simulations},
      journal = {American Journal of Mechanical and Industrial Engineering},
      volume = {5},
      number = {4},
      pages = {53-58},
      doi = {10.11648/j.ajmie.20200504.11},
      url = {https://doi.org/10.11648/j.ajmie.20200504.11},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajmie.20200504.11},
      abstract = {One of the most important tasks when designing a pumping system is for the engineer or specialist to know the components to be used including the pumps. Knowledge about the project helps to achieve a more economical system with less risk of failure. One of these failures may result in the insertion of a pump that does not generate the proper pressure, causing the system not to function as designed. To know the pumping pressure in a system containing one pump, one long pipe and one reservoir, it is necessary to know which are the possible equations that could calculate the friction factor f more accurately to obtain the pressure. The main equation used in the turbulent regime, where Reynolds number Re (Re> 4,000), is the Colebrook equation and it is a nonlinear equation and it requires numerical programs to calculate the factor friction. Other equations are apparently simpler to employ, but are limited by the Reynolds Re number and / or the relative roughness. The purpose of this paper is to know which of the famous equations in the turbulent regime - Haaland, Blasius, Prandtl, von Karman - could be used to design a bomb when confronted with the calculations obtained by the Colebrook equation. The simulations were programmed in Python and the pumping pressure values and the error percentage were compared.},
     year = {2020}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Pumping Pressure Estimation Using Famous Turbulent Fluid Mechanics Equations Through Python Simulations
    AU  - Luciana Claudia Martins Ferreira Diogenes
    Y1  - 2020/09/08
    PY  - 2020
    N1  - https://doi.org/10.11648/j.ajmie.20200504.11
    DO  - 10.11648/j.ajmie.20200504.11
    T2  - American Journal of Mechanical and Industrial Engineering
    JF  - American Journal of Mechanical and Industrial Engineering
    JO  - American Journal of Mechanical and Industrial Engineering
    SP  - 53
    EP  - 58
    PB  - Science Publishing Group
    SN  - 2575-6060
    UR  - https://doi.org/10.11648/j.ajmie.20200504.11
    AB  - One of the most important tasks when designing a pumping system is for the engineer or specialist to know the components to be used including the pumps. Knowledge about the project helps to achieve a more economical system with less risk of failure. One of these failures may result in the insertion of a pump that does not generate the proper pressure, causing the system not to function as designed. To know the pumping pressure in a system containing one pump, one long pipe and one reservoir, it is necessary to know which are the possible equations that could calculate the friction factor f more accurately to obtain the pressure. The main equation used in the turbulent regime, where Reynolds number Re (Re> 4,000), is the Colebrook equation and it is a nonlinear equation and it requires numerical programs to calculate the factor friction. Other equations are apparently simpler to employ, but are limited by the Reynolds Re number and / or the relative roughness. The purpose of this paper is to know which of the famous equations in the turbulent regime - Haaland, Blasius, Prandtl, von Karman - could be used to design a bomb when confronted with the calculations obtained by the Colebrook equation. The simulations were programmed in Python and the pumping pressure values and the error percentage were compared.
    VL  - 5
    IS  - 4
    ER  - 

    Copy | Download

Author Information
  • Independent Researcher, Frutal, Brazil

  • Sections