For nuclei with 54≤Z≤60 and 86≤N≤94, the results regarding the excitation spectra at low energies, both in positive and negative parity, as well as the transition probabilities for electric dipole (B(E1)), quadrupole (B(E2)), and octupole transitions (B(E(3)), indicate the emergence of significant octupole behavior. These observations have been made using the Interacting Boson Model-1 (IBM-1). The study examines the onset of octupole deformation and its impact on the spectroscopic characteristics in even-even neutron-rich lanthanide isotopes, specifically in the Ba and Nd nuclei. The investigation compares the results obtained from the Interacting Boson Model-1 (IBM-1) with the existing experimental data. The focus is on understanding how the addition of neutrons influences the development of octupole deformation and its manifestation in the observed spectroscopic features. The onset of strong octupolarity for Z≈ 56 and N ≈ 88 nuclei is indicated by the results obtained for the electric dipole, quadrupole, and octupole transition probabilities, as well as the low-energy positive and negative-parity excitation spectra. Conversely, discrepancies between the spectroscopic data and the IBM results suggest that the mapping quality needs to be evaluated in order to determine if the mapped boson Hamiltonian or the fermionic calculations are the source of the issues.
Published in | American Journal of Modern Energy (Volume 10, Issue 2) |
DOI | 10.11648/j.ajme.20241002.11 |
Page(s) | 18-24 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2024. Published by Science Publishing Group |
IBM, Energy Levels, Electromagnetic Octupole Transitions
3.1. Energy Spectra
3.2. Electric Transition Probability
Nuclei | Eλ | transitions | Exp. | IBM-1 |
---|---|---|---|---|
144Ba | E2 | 42 | ||
78 | ||||
52 | ||||
55.5 | ||||
E3 | 51 | |||
90 | ||||
121 | ||||
146Ba | E1 | 11 | ||
6.2 | ||||
1.88 | ||||
1.96 | ||||
E2 | 67 | |||
102 | ||||
89 | ||||
59 | ||||
48 | ||||
E3 | 55 | |||
70 | ||||
80 | ||||
102 | ||||
148Nd | E1 | 0.030 | ||
0.055 | ||||
0.043 | ||||
E2 | 53.8 | |||
98.3 | ||||
33.0 | ||||
0.62 | ||||
16.2 | ||||
18 | ||||
2.72 | ||||
105 | ||||
E3 |
[1] | P. A. Butler and W. Nazarewicz, Rev. Mod. Phys. 68 (1996) 349. |
[2] | P. A. Butler, J. Phys. G: Nucl. Part. Phys. 43 (2016) 073002. |
[3] | P. A. Butler, Proc. Roy. Soc. A: Mathematical, Physical and Engineering Sciences 476 (2020) 0200202. |
[4] | L. P. Gaffney, P. A. Butler, M. Scheck, A. B. Hayes, F. Wenander, M. Albers, B. Bastin, C. Bauer, A. Blazhev, S. B¨onig, N. Bree, J. Cederk¨all, T. Chupp, D. Cline, T. E. Cocolios, T. Davinson, H. D. Witte, J. Diriken, T. Grahn, A. Herzan, M. Huyse, D. G. Jenkins, D. T. Joss, N. Kesteloot, J. Konki, M. Kowalczyk, T. Kr¨oll, E. Kwan, R. Lutter, K. Moschner, P. Napiorkowski, J. Pakarinen, M. Pfeiffer, D. Radeck, P. Reiter, K. Reynders, S. V. Rigby, L. M. Robledo, M. Rudigier, S. Sambi, M. Seidlitz, B. Siebeck, T. Stora, P. Thoele, P. V. Duppen, M. J. Vermeulen, M. von Schmid, D. Voulot, N. Warr, K. Wimmer, K. WrzosekLipska, C. Y. Wu, and M. Zielinska, Nature (London) 497 (2013) 199. |
[5] | B. Bucher, S. Zhu, C. Y. Wu, R. V. F. Janssens, D. Cline, A. B. Hayes, M. Albers, A. D. Ayangeakaa, P. A. Butler, C. M. Campbell, M. P. Carpenter, C. J. Chiara, J. A. Clark, H. L. Crawford, M. Cromaz, H. M. David, C. Dickerson, E. T. Gregor, J. Harker, C. R. Hoffman, B. P. Kay, F. G. Kondev, A. Korichi, T. Lauritsen, A. O. Macchiavelli, R. C. Pardo, A. Richard, M. A. Riley, G. Savard, M. Scheck, D. Seweryniak, M. K. Smith, R. Vondrasek, and A. Wiens, Phys. Rev. Lett. 116 (2016) 112503. |
[6] | B. Bucher, S. Zhu, C. Y. Wu, R. V. F. Janssens, R. N. Bernard, L. M. Robledo, T. R. Rodr´ıguez, D. Cline, A. B. Hayes, A. D. Ayangeakaa, M. Q. Buckner, C. M. Campbell, M. P. Carpenter, J. A. Clark, H. L. Crawford, H. M. David, C. Dickerson, J. Harker, C. R. Hoffman, B. P. Kay, F. G. Kondev, T. Lauritsen, A. O. Macchiavelli, R. C. Pardo, G. Savard, D. Seweryniak, and R. Vondrasek, Phys. Rev. Lett. 118 (2017) 152504. |
[7] | P. A. Butler, L. P. Gaffney, P. Spagnoletti, K. Abrahams, M. Bowry, J. Cederk¨all, G. de Angelis, H. De Witte, P. E. Garrett, A. Goldkuhle, C. Henrich, A. Illana, K. Johnston, D. T. Joss, J. M. Keatings, N. A. Kelly, M. Komorowska, J. Konki, T. Kroll, M. Lozano, B. S. Nara Singh, D. O’Donnell, J. Ojala, R. D. Page, L. G. Pedersen, C. Raison, P. Reiter, J. A. Rodriguez, D. Rosiak, S. Rothe, M. Scheck, M. Seidlitz, T. M. Shneidman, B. Siebeck, J. Sinclair, J. F. Smith, M. Stryjczyk, P. Van Duppen, S. Vinals, V. Virtanen, N. Warr, K. Wrzosek-Lipska, and M. Zieli´nska, Phys. Rev. Lett. 124 (2020) 042503. |
[8] | M. M. R. Chishti, D. O’Donnell, G. Battaglia, M. Bowry, D. A. Jaroszynski, B. S. N. Singh, M. Scheck, P. Spagnoletti, and J. F. Smith, Nat. Phys. 16 (2022) 853. |
[9] | D. Bonatsos, D. Lenis, N. Minkov, D. Petrellis, and P. Yotov, Phys. Rev. C 71 (2023) 064309. |
[10] | P. G. Bizzeti and A. M. Bizzeti-Sona, Phys. Rev. C 88 (2013) 011305. |
[11] | N. Yoshinaga, K. Yanase, K. Higashiyama and E. Teruya, Phys. Rev. C 98 (2018) 044321. |
[12] | N. Yoshinaga, K. Yanase, C. Watanabe, and K. Higashiyama, Prog. Theor. Exp. Phys. 221 (2021) 063D01. |
[13] | O. Vallejos and J. Barea, Phys. Rev. C 104 (2021) 014308. |
[14] | T. M. Shneidman, G. G. Adamian, N. V. Antonenko, R. V. Jolos, and W. Scheid, Phys. Lett. B 526 (2002) 322. |
[15] | T. M. Shneidman, G. G. Adamian, N. V. Antonenko, R. V. Jolos, and W. Scheid, Phys. Rev. C 67 (203) 014313. |
[16] | P. Ring and P. Schuck, The nuclear many-body problem, (Berlin: Springer-Verlag, 1980). |
[17] | R. Lic˘a, G. Benzoni, T. R. Rodr´ıguez, M. J. G. Borge, L. M. Fraile, H. Mach, A. I. Morales, M. Madurga, C. O. Sotty, V. Vedia, H. De Witte, J. Benito, R. N. Bernard, T. Berry, A. Bracco, F. Camera, S. Ceruti, V. Charviakova, N. Cieplicka-Ory´nczak, C. Costache, F. C. L. Crespi, J. Creswell, G. Fernandez-Mart´ınez, H. Fynbo, P. T. Greenlees, I. Homm, M. Huyse, J. Jolie, V. Karayonchev, U. K¨oster, J. Konki, T. Kroll, J. Kurcewicz, T. Kurtukian-Nieto, I. Lazarus, M. V. Lund, N. M˘arginean, R. M˘arginean, C. Mihai, R. E. Mihai, A. Negret, A. Orduz, Z. Patyk, S. Pascu, V. Pucknell, P. Rahkila, E. Rapisarda, J. M. Regis, L. M. Robledo, F. Rotaru, N. Saed-Samii, V. S´anchez-Tembleque, M. Stanoiu, O. Tengblad, M. Thuerauf, A. Turturica, P. Van Duppen, and N. Warr (IDS Collaboration), Phys. Rev. C 97 (2018) 024305. |
[18] | Y. Fu, H. Wang, L.-J. Wang, and J. M. Yao, Phys. Rev. C 97 (2018) 024338. |
[19] | L. M. Robledo and P. A. Butler, Phys. Rev. C 88 (2013) 051302. |
[20] | L. M. Robledo, J. L. Egido, B. Nerlo-Pomorska, and K. Pomorski, Phys. Lett. B 201 (1998) 409. |
[21] | S. Y. Xia, H. Tao, Y. Lu, Z. P. Li, T. Nikˇsi´c, and D. Vretenar, Phys. Rev. C 96, 054303 (2017). |
[22] | K. Nomura, L. Lotina, T. Niksic, and D. Vretenar, Phys. Rev. C 103 (2021), 054301. |
[23] | T. Otsuka, A. Arima, and F. Iachello, Nucl. Phys. A 309 (1978) 1. |
[24] | T. Mizusaki and T. Otsuka, Prog. Theor. Phys. Suppl. 125 (1996) 97. |
[25] | K. Nomura, R. Rodr´ıguez-Guzm´an, Y. M. Humadi, L. M. Robledo, and J. E. Garc´ıa-Ramos, Phys. Rev. C 102 (2020) 064326. |
[26] | K. Nomura, R. Rodr´ıguez-Guzm´an, L. M. Robledo, and J. E. Garc´ıa-Ramos, Phys. Rev. C 103 (2021) 044311. |
[27] | K. Nomura, R. Rodr´ıguez-Guzm´an, and L. M. Robledo, Phys. Rev. C 92 (2015) 014312. |
[28] | Brookhaven National Nuclear Data Center, |
[29] | M. Sugawara and H. Kusakari, Phys. Rev. C 75, 067302 (2007). |
[30] | J. B. Gupta and M. Saxena, Phys. Rev. C 91, 054312 (2015). |
[31] | S. Y. Lee, J. H. Lee, and Y. J. Lee, J. Korean Phys. Soc. 72, 1147 (2018). |
[32] | S. J. Zhu, E. H. Wang, J. H. Hamilton, A. V. Ramayya, Y. X. Liu, N. T. Brewer, Y. X. Luo, J. O. Rasmussen, Z. G. Xiao, Y. Huang, G. M. Ter-Akopian, and T. Oganessian, Phys. Rev. Lett. 124 (2020) 032501. |
[33] | T. Kibedi and R. Spear, Atomic Data and Nuclear Data Tables 80 (2002) 35. |
APA Style
Hashim, T. A., Abood, S. N. (2024). Study of Octupole Transitions in Xe, Ba, Ce and Nd Nuclei within Interacting Boson Model. American Journal of Modern Energy, 10(2), 18-24. https://doi.org/10.11648/j.ajme.20241002.11
ACS Style
Hashim, T. A.; Abood, S. N. Study of Octupole Transitions in Xe, Ba, Ce and Nd Nuclei within Interacting Boson Model. Am. J. Mod. Energy 2024, 10(2), 18-24. doi: 10.11648/j.ajme.20241002.11
AMA Style
Hashim TA, Abood SN. Study of Octupole Transitions in Xe, Ba, Ce and Nd Nuclei within Interacting Boson Model. Am J Mod Energy. 2024;10(2):18-24. doi: 10.11648/j.ajme.20241002.11
@article{10.11648/j.ajme.20241002.11, author = {Tuqa Abdulbaset Hashim and Saad Naji Abood}, title = {Study of Octupole Transitions in Xe, Ba, Ce and Nd Nuclei within Interacting Boson Model }, journal = {American Journal of Modern Energy}, volume = {10}, number = {2}, pages = {18-24}, doi = {10.11648/j.ajme.20241002.11}, url = {https://doi.org/10.11648/j.ajme.20241002.11}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajme.20241002.11}, abstract = {For nuclei with 54≤Z≤60 and 86≤N≤94, the results regarding the excitation spectra at low energies, both in positive and negative parity, as well as the transition probabilities for electric dipole (B(E1)), quadrupole (B(E2)), and octupole transitions (B(E(3)), indicate the emergence of significant octupole behavior. These observations have been made using the Interacting Boson Model-1 (IBM-1). The study examines the onset of octupole deformation and its impact on the spectroscopic characteristics in even-even neutron-rich lanthanide isotopes, specifically in the Ba and Nd nuclei. The investigation compares the results obtained from the Interacting Boson Model-1 (IBM-1) with the existing experimental data. The focus is on understanding how the addition of neutrons influences the development of octupole deformation and its manifestation in the observed spectroscopic features. The onset of strong octupolarity for Z≈ 56 and N ≈ 88 nuclei is indicated by the results obtained for the electric dipole, quadrupole, and octupole transition probabilities, as well as the low-energy positive and negative-parity excitation spectra. Conversely, discrepancies between the spectroscopic data and the IBM results suggest that the mapping quality needs to be evaluated in order to determine if the mapped boson Hamiltonian or the fermionic calculations are the source of the issues. }, year = {2024} }
TY - JOUR T1 - Study of Octupole Transitions in Xe, Ba, Ce and Nd Nuclei within Interacting Boson Model AU - Tuqa Abdulbaset Hashim AU - Saad Naji Abood Y1 - 2024/04/28 PY - 2024 N1 - https://doi.org/10.11648/j.ajme.20241002.11 DO - 10.11648/j.ajme.20241002.11 T2 - American Journal of Modern Energy JF - American Journal of Modern Energy JO - American Journal of Modern Energy SP - 18 EP - 24 PB - Science Publishing Group SN - 2575-3797 UR - https://doi.org/10.11648/j.ajme.20241002.11 AB - For nuclei with 54≤Z≤60 and 86≤N≤94, the results regarding the excitation spectra at low energies, both in positive and negative parity, as well as the transition probabilities for electric dipole (B(E1)), quadrupole (B(E2)), and octupole transitions (B(E(3)), indicate the emergence of significant octupole behavior. These observations have been made using the Interacting Boson Model-1 (IBM-1). The study examines the onset of octupole deformation and its impact on the spectroscopic characteristics in even-even neutron-rich lanthanide isotopes, specifically in the Ba and Nd nuclei. The investigation compares the results obtained from the Interacting Boson Model-1 (IBM-1) with the existing experimental data. The focus is on understanding how the addition of neutrons influences the development of octupole deformation and its manifestation in the observed spectroscopic features. The onset of strong octupolarity for Z≈ 56 and N ≈ 88 nuclei is indicated by the results obtained for the electric dipole, quadrupole, and octupole transition probabilities, as well as the low-energy positive and negative-parity excitation spectra. Conversely, discrepancies between the spectroscopic data and the IBM results suggest that the mapping quality needs to be evaluated in order to determine if the mapped boson Hamiltonian or the fermionic calculations are the source of the issues. VL - 10 IS - 2 ER -