Biodiesel is considered as an alternative source of energy obtained from renewable materials. In the present paper, the investigation of the applicability of adaptive neuro-fuzzy inference system (ANFIS) and artificial neural network (ANN) approaches for modeling the biodiesel blends property including kinematic viscosity and density at various temperatures and the volume fractions of biodiesel. An experimental database of kinematic viscosity and density of biodiesel blends (biodiesel blend with diesel fuel) were used for developing of models, where the input variables in the network were the temperature and volume fractions of biodiesel. The model results were compared with experimental ones for determining the accuracy of the models. The developed models produced idealized results and were found to be useful for predicting the kinematic viscosity and density of biodiesel blends with a limited number of available data. Moreover, the results suggest that the ANFIS approach can be used successfully for predicting the kinematic viscosity and density of biodiesel blends at various volume fractions and temperature compared to another models.
Published in | American Journal of Computer Science and Technology (Volume 1, Issue 1) |
DOI | 10.11648/j.ajcst.20180101.12 |
Page(s) | 8-18 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2017. Published by Science Publishing Group |
ANFIS, ANN, Biodiesel, Density, Kinematic Viscosity
[1] | Demirbas, A. (2008). Relationships derived from physical properties of vegetable oil and biodiesel fuels. Fuel, 87 (8-9), 1743-1748. |
[2] | Knothe, G., & Steidley, K. R. (2007). Kinematic viscosity of biodiesel components (fatty acid alkyl esters) and related compounds at low temperatures. Fuel, 86 (16), 2560-2567. |
[3] | Ma, F., & A Hanna, M. (1999). Biodiesel production: a review. Bioresource Technology, 70 (1), 1-15. |
[4] | Ma, F., Clements, L., & Hanna, M. A. (1999). The effect of mixing on transesterification of beef tallow. Bioresource Technology, 69 (3), 289-293. |
[5] | Pinto, A., Guarieiro, L., Rezende, M., Lopes, W., Pereira, P., & Andrade, J. (2005). Biodiesel: an overview. Journal of the Brazilian Chemical Society, 16, 1313-1330. Retrieved from. |
[6] | Vicente, G., Martı́nez, M., & Aracil, J. (2004). Integrated biodiesel production: a comparison of different homogeneous catalysts systems. Bioresource Technology, 92 (3), 297-305. |
[7] | Misra, R., & Murthy, M. (2010). Straight vegetable oils usage in a compression ignition engine—A review. Renewable and Sustainable Energy Reviews, 14 (9), 3005-3013. |
[8] | De Almeida, S. (2002). Performance of a diesel generator fuelled with palm oil. Fuel, 81 (16), 2097-2102. |
[9] | Cursaru, D. L., Tănăsescu, C., & Mărdărescu, V. (2011). Effect of biodiesel and alkyl ether on diesel engine emissions and performances. Air Pollution XIX. doi:10.2495/air110311. |
[10] | ElSolh, N. (2011). The Manufacture of Biodiesel from the used vegetable oil (Unpublished master's thesis). Cairo University, Egypt. |
[11] | Benjumea, P., Agudelo, J., & Agudelo, A. (2008). Basic properties of palm oil biodiesel–diesel blends. Fuel, 87 (10-11), 2069-2075. |
[12] | Gouw, T. H., & Vlugter, J. C. (1964). Physical properties of fatty acid methyl esters. I. density and molar volume. Journal of the American Oil Chemists’ Society, 41 (2), 142-145. |
[13] | Allen, C., Watts, K., Ackman, R., & Pegg, M. (1999). Predicting the viscosity of biodiesel fuels from their fatty acid ester composition. Fuel, 78 (11), 1319-1326. |
[14] | Krisnangkura, K., Yimsuwan, T., & Pairintra, R. (2006). An empirical approach in predicting biodiesel viscosity at various temperatures. Fuel, 85 (1), 107-113. |
[15] | Betiku, E., Omilakin, O. R., Ajala, S. O., Okeleye, A. A., Taiwo, A. E., & Solomon, B. O. (2014). Mathematical modeling and process parameters optimization studies by artificial neural network and response surface methodology: A case of non-edible neem (Azadirachta indica) seed oil biodiesel synthesis. Energy, 72, 266-273. doi:10.1016/j.energy.2014.05.033. |
[16] | Wakil, M., Kalam, M., Masjuki, H., Atabani, A., & Rizwanul Fattah, I. (2015). Influence of biodiesel blending on physicochemical properties and importance of mathematical model for predicting the properties of biodiesel blend. Energy Conversion and Management, 94, 51-67. doi:10.1016/j.enconman.2015.01.043. |
[17] | Prieto, N. M., Ferreira, A. G., Portugal, A. T., Moreira, R. J., & Santos, J. B. (2015). Correlation and prediction of biodiesel density for extended ranges of temperature and pressure. Fuel, 141, 23-38. doi:10.1016/j.fuel.2014.09.113. |
[18] | Barabás, I., & Todoruţ, I. (2011). Predicting the Temperature Dependent Viscosity of Biodiesel–Diesel–Bioethanol Blends. Energy & Fuels, 25 (12), 5767-5774. doi:10.1021/ef2007936. |
[19] | Barabás, I. (2013). Predicting the temperature dependent density of biodiesel–diesel–bioethanol blends. Fuel, 109, 563-574. doi:10.1016/j.fuel.2013.03.001. |
[20] | Chavarria-Hernandez, J. C., & Pacheco-Catalán, D. E. (2014). Predicting the kinematic viscosity of FAMEs and biodiesel: Empirical models. Fuel, 124, 212-220. doi:10.1016/j.fuel.2014.01.105. |
[21] | Geacai, S., Iulian, O., & Nita, I. (2015). Measurement, correlation and prediction of biodiesel blends viscosity. Fuel, 143, 268-274. doi:10.1016/j.fuel.2014.11.041. |
[22] | Phankosol, S., Sudaprasert, K., Lilitchan, S., Aryusuk, K., & Krisnangkura, K. (2015). An Empirical Equation for Estimation of Kinematic Viscosity of Fatty Acid Methyl Esters and Biodiesel. Journal of the American Oil Chemists' Society, 92 (7), 1051-1061. doi:10.1007/s11746-015-2667-7. |
[23] | Mostafaei, M., Javadikia, H., & Naderloo, L. (2016). Modeling the effects of ultrasound power and reactor dimension on the biodiesel production yield: Comparison of prediction abilities between response surface methodology (RSM) and adaptive neuro-fuzzy inference system (ANFIS). Energy, 115, 626-636. doi:10.1016/j.energy.2016.09.028. |
[24] | Ogaga Ighose, B., Adeleke, I. A., Damos, M., Adeola Junaid, H., Ernest Okpalaeke, K., & Betiku, E. (2017). Optimization of biodiesel production from The vetia peruviana seed oil by adaptive neuro-fuzzy inference system coupled with genetic algorithm and response surface methodology. Energy Conversion and Management, 132, 231-240. doi:10.1016/j.enconman.2016.11.030. |
[25] | Hosoz, M., Ertunc, H. M., Karabektas, M., & Ergen, G. (2013). ANFIS modelling of the performance and emissions of a diesel engine using diesel fuel and biodiesel blends. Applied Thermal Engineering, 60 (1-2), 24-32. doi:10.1016/j.applthermaleng.2013.06.040. |
[26] | Meng, X., Jia, M., & Wang, T. (2014). Neural network prediction of biodiesel kinematic viscosity at 313K. Fuel, 121, 133-140. doi:10.1016/j.fuel.2013.12.029. |
[27] | Rocabruno-Valdés, C., Ramírez-Verduzco, L., & Hernández, J. (2015). Artificial neural network models to predict density, dynamic viscosity, and cetane number of biodiesel. Fuel, 147, 9-17. doi:10.1016/j.fuel.2015.01.024. |
[28] | Eryilmaz, T., Yesilyurt, M. K., Taner, A., & Celik, S. A. (2015). Prediction of Kinematic Viscosities of Biodiesels Derived from Edible and Non-edible Vegetable Oils by Using Artificial Neural Networks. Arabian Journal for Science and Engineering, 40 (12), 3745-3758. doi:10.1007/s13369-015-1831-6. |
[29] | Ilangkumaran, M., Sakthivel, G., & Nagarajan, G. (2015). Artificial neural network approach to predict the engine performance of fish oil biodiesel with diethyl ether using back propagation algorithm. International Journal of Ambient Energy, 37 (5), 446-455. doi:10.1080/01430750.2014.984082. |
[30] | Shenbaga Vinayaga Moorthi, N., Arul Franco, P., & Ramesh, K. (2015). Application of design of experiments and artificial neural network in optimization of ultrasonic energy-assisted transesterification of Sardinella longiceps fish oil to biodiesel. Journal of the Chinese Institute of Engineers, 38 (6), 731-741. doi:10.1080/02533839.2015.1027740. |
[31] | Rocabruno-Valdés, C., Ramírez-Verduzco, L., & Hernández, J. (2015). Artificial neural network models to predict density, dynamic viscosity, and cetane number of biodiesel. Fuel, 147, 9-17. doi:10.1016/j.fuel.2015.01.024. |
[32] | Amin, A., Gadallah, A., El Morsi, A., El-Ibiari, N., & El-Diwani, G. (2016). Experimental and empirical study of diesel and castor biodiesel blending effect, on kinematic viscosity, density and calorific value. Egyptian Journal of Petroleum, 25 (4), 509-514. |
[33] | Gülüm, M., & Bilgin, A. (2016). Two-term power models for estimating kinematic viscosities of different biodiesel-diesel fuel blends. Fuel Processing Technology, 149, 121-130. |
[34] | Geacai, S., Iulian, O., & Nita, I. (2015). Measurement, correlation and prediction of biodiesel blends viscosity. Fuel, 143, 268-274. |
[35] | Freitas, S. V., Segovia, J. J., Carmen Martín, M., Zambrano, J., Oliveira, M. B., Lima, Á. S., & Coutinho, J. A. (2014). Measurement and prediction of high-pressure viscosities of biodiesel fuels. Fuel, 122, 223-228. |
[36] | Ivaniš, G. R., Radović, I. R., Veljković, V. B., & Kijevčanin, M. L. (2016). Thermodynamic properties of biodiesel and petro-diesel blends at high pressures and temperatures. Experimental and modeling. Fuel, 184, 277-288. doi:10.1016/j.fuel.2016.07.023 |
[37] | Esteban, B., Riba, J., Baquero, G., Rius, A., & Puig, R. (2012). Temperature dependence of density and viscosity of vegetable oils. Biomass and Bioenergy, 42, 164-171. |
[38] | Ramírez-Verduzco, L. F., García-Flores, B. E., Rodríguez-Rodríguez, J. E., & Del Rayo Jaramillo-Jacob, A. (2011). Prediction of the density and viscosity in biodiesel blends at various temperatures. Fuel, 90 (5), 1751-1761. |
[39] | Moradi, G., Mohadesi, M., Karami, B., & Moradi, R. (2015). Using Artificial Neural Network for Estimation of Density and Viscosities of Biodiesel–Diesel Blends. Journal of Chemical and Petroleum Engineering, 49 (2), 153-165. |
[40] | Yuan, W., Hansen, A. C., Zhang, Q., & Tan, Z. (2005). Temperature-dependent kinematic viscosity of selected biodiesel fuels and blends with diesel fuel. Journal of the American Oil Chemists' Society, 82 (3), 195-199. |
[41] | Tate, R., Watts, K., Allen, C., & Wilkie, K. (2006). The densities of three biodiesel fuels at temperatures up to 300°C. Fuel, 85 (7-8), 1004-1009. |
[42] | Tate, R., Watts, K., Allen, C., & Wilkie, K. (2006). The viscosities of three biodiesel fuels at temperatures up to 300°C. Fuel, 85 (7-8), 1010-1015. |
[43] | Aksoy, F., Baydir, Ş. A., & Bayrakçeken, H. (2009). The Viscosity at Different Temperatures of Soybean and Sunflower Biodiesels and Diesel Fuel Blends. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 32 (2), 148-156. |
[44] | Machado, M., Zuvanov, V., Rojas, E., Zuniga, A., & Costa, B. (2012). Thermo physical Properties of Biodiesel Obtained from Vegetable Oils: Corn, Soy, Canola And Sunflower. Enciclopédia Biosfera,, 8 (14), 917. |
[45] | Freitas, S. V., Pratas, M. J., Ceriani, R., Lima, A. S., & Coutinho, J. A. (2011). Evaluation of Predictive Models for the Viscosity of Biodiesel. Energy & Fuels, 25 (1), 352-358. doi:10.1021/ef101299d. |
[46] | Barabás, I. (2013). Predicting the temperature dependent density of biodiesel–diesel–bioethanol blends. Fuel, 109, 563-574. |
[47] | Tesfa, B., Mishra, R., Gu, F., & Powles, N. (2010). Prediction models for density and viscosity of biodiesel and their effects on fuel supply system in CI engines. Renewable Energy, 35 (12), 2752-2760. |
[48] | Mejía, J., Salgado, N., & Orrego, C. (2013). Effect of blends of Diesel and Palm-Castor biodiesels on viscosity, cloud point and flash point. Industrial Crops and Products, 43, 791-797. |
[49] | Kanaveli, I., Atzemi, M., & Lois, E. (2017). Predicting the viscosity of diesel/biodiesel blends. Fuel, 199, 248-263. |
[50] | Jang, J. (1993). ANFIS: adaptive-network-based fuzzy inference system. IEEE Transactions on Systems, Man, and Cybernetics, 23 (3), 665-685. doi:10.1109/21.256541. |
[51] | Gokalp, B., Ertunc, H. M., Hosoz, M., & Sarac, H. I. (2010). Performance prediction of a CI engine using artificial neural network for various SME and diesel fuel blends. International Journal of Vehicle Design, 54 (2), 156. doi:10.1504/ijvd.2010.035357. |
[52] | Canakci, M., A. Erdil, and E. Arcaklioglu. (2006). “Performance and Exhaust Emissions of a Biodiesel Engine using Artificial Neural Networks (ANNs).” Applied Energy 83 (6): 594–605. |
[53] | Kalogirou, S. A. (2001). Artificial neural networks in renewable energy systems applications: a review. Renewable and Sustainable Energy Reviews, 5 (4), 373-401. doi:10.1016/s1364-0321 (01) 00006-5. |
[54] | Sargolzaei, J., Khoshnoodi, M., Saghatoleslami, N., & Mousavi, M. (2008). Fuzzy inference system to modeling of crossflow milk ultrafiltration. Applied Soft Computing, 8 (1), 456-465. doi:10.1016/j.asoc.2007.02.007. |
[55] | Sargolzaei J, Saghatroleslami N, Khoshnoodi M, Mosavi M. Comparative study of artificial neural nets (ANN) and statistical methods for predicting the performance of ultrafiltration process in the milk industry. Iran. J Chem Chem Eng 2006; 25: 67–76. |
APA Style
Youssef Kassem, Hüseyin Çamur, Kamal Elmokhtar Bennur. (2017). Adaptive Neuro-Fuzzy Inference System (ANFIS) and Artificial Neural Network (ANN) for Predicting the Kinematic Viscosity and Density of Biodiesel-Petroleum Diesel Blends. American Journal of Computer Science and Technology, 1(1), 8-18. https://doi.org/10.11648/j.ajcst.20180101.12
ACS Style
Youssef Kassem; Hüseyin Çamur; Kamal Elmokhtar Bennur. Adaptive Neuro-Fuzzy Inference System (ANFIS) and Artificial Neural Network (ANN) for Predicting the Kinematic Viscosity and Density of Biodiesel-Petroleum Diesel Blends. Am. J. Comput. Sci. Technol. 2017, 1(1), 8-18. doi: 10.11648/j.ajcst.20180101.12
AMA Style
Youssef Kassem, Hüseyin Çamur, Kamal Elmokhtar Bennur. Adaptive Neuro-Fuzzy Inference System (ANFIS) and Artificial Neural Network (ANN) for Predicting the Kinematic Viscosity and Density of Biodiesel-Petroleum Diesel Blends. Am J Comput Sci Technol. 2017;1(1):8-18. doi: 10.11648/j.ajcst.20180101.12
@article{10.11648/j.ajcst.20180101.12, author = {Youssef Kassem and Hüseyin Çamur and Kamal Elmokhtar Bennur}, title = {Adaptive Neuro-Fuzzy Inference System (ANFIS) and Artificial Neural Network (ANN) for Predicting the Kinematic Viscosity and Density of Biodiesel-Petroleum Diesel Blends}, journal = {American Journal of Computer Science and Technology}, volume = {1}, number = {1}, pages = {8-18}, doi = {10.11648/j.ajcst.20180101.12}, url = {https://doi.org/10.11648/j.ajcst.20180101.12}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajcst.20180101.12}, abstract = {Biodiesel is considered as an alternative source of energy obtained from renewable materials. In the present paper, the investigation of the applicability of adaptive neuro-fuzzy inference system (ANFIS) and artificial neural network (ANN) approaches for modeling the biodiesel blends property including kinematic viscosity and density at various temperatures and the volume fractions of biodiesel. An experimental database of kinematic viscosity and density of biodiesel blends (biodiesel blend with diesel fuel) were used for developing of models, where the input variables in the network were the temperature and volume fractions of biodiesel. The model results were compared with experimental ones for determining the accuracy of the models. The developed models produced idealized results and were found to be useful for predicting the kinematic viscosity and density of biodiesel blends with a limited number of available data. Moreover, the results suggest that the ANFIS approach can be used successfully for predicting the kinematic viscosity and density of biodiesel blends at various volume fractions and temperature compared to another models.}, year = {2017} }
TY - JOUR T1 - Adaptive Neuro-Fuzzy Inference System (ANFIS) and Artificial Neural Network (ANN) for Predicting the Kinematic Viscosity and Density of Biodiesel-Petroleum Diesel Blends AU - Youssef Kassem AU - Hüseyin Çamur AU - Kamal Elmokhtar Bennur Y1 - 2017/12/24 PY - 2017 N1 - https://doi.org/10.11648/j.ajcst.20180101.12 DO - 10.11648/j.ajcst.20180101.12 T2 - American Journal of Computer Science and Technology JF - American Journal of Computer Science and Technology JO - American Journal of Computer Science and Technology SP - 8 EP - 18 PB - Science Publishing Group SN - 2640-012X UR - https://doi.org/10.11648/j.ajcst.20180101.12 AB - Biodiesel is considered as an alternative source of energy obtained from renewable materials. In the present paper, the investigation of the applicability of adaptive neuro-fuzzy inference system (ANFIS) and artificial neural network (ANN) approaches for modeling the biodiesel blends property including kinematic viscosity and density at various temperatures and the volume fractions of biodiesel. An experimental database of kinematic viscosity and density of biodiesel blends (biodiesel blend with diesel fuel) were used for developing of models, where the input variables in the network were the temperature and volume fractions of biodiesel. The model results were compared with experimental ones for determining the accuracy of the models. The developed models produced idealized results and were found to be useful for predicting the kinematic viscosity and density of biodiesel blends with a limited number of available data. Moreover, the results suggest that the ANFIS approach can be used successfully for predicting the kinematic viscosity and density of biodiesel blends at various volume fractions and temperature compared to another models. VL - 1 IS - 1 ER -