This study aims to assess the factors and geochemical processes controlling groundwater quality in the prefecture of Bassar. It is a major yam tubers and pre-colonial West African iron production center in Togo but with limited investigations on groundwater chemistry. Conventional hydrochemical techniques with geochemical mass balance calculations, intervariables correlation, and factor analysis with principal component methods were applied to a chemical database of major ions and heavy metals concentrations of twenty borehole water samples. These groundwater samples were collected during the dry season and analyzed following AFNOR standard methods for the examination of water. The results showed fresh and circumneutral groundwater types with pH values between 6.7 and 7.5 with an average of 7.1 and EC between 280 and 1148 µS/cm and an average of 691 µS/cm. All the hydrochemical parameters comply with the WHO drinking water guideline value except Arsenic content for 5 % of the samples, suggesting potential health risks for residents relying on raw groundwater for drinking purposes. Anions and cations' contributions to groundwater mineralization are in the order of HCO3-> Cl- > SO42- > NO3- and Ca2+ > Mg2+ > Na+ > K+, respectively. The main hydrochemical facies were mixed cations-HCO3 water types, followed by accessory Ca-HCO3, Mg-HCO3, Ca-Mg-Cl, and Mg-Na-HCO3, under the control of water-rock interaction mechanisms and human activities influence from agriculture practices. The geochemical processes are silicate minerals hydrolysis, carbonate, and soil salts dissolution, sorption, and cations exchange with the thermodynamic equilibrium of groundwater with kaolinite, muscovite, K-feldspar, and smectites such as Mg-montmorillonite solid phases. Fe/Mn-(hydr)oxide phases in the aquifer matrix exert significant control on the mobility of As and Sb originating from geogenic sources in the study area. This study provides insight into the factors and geochemical processes controlling the groundwater quality, as a baseline tool for water security concerning major and trace constituents in the Bassar prefecture.
Published in | American Journal of Chemical Engineering (Volume 13, Issue 1) |
DOI | 10.11648/j.ajche.20251301.11 |
Page(s) | 1-13 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2025. Published by Science Publishing Group |
Arsenic, Cations Exchange, Groundwater, Hydrochemistry, Silicates, Togo
Min | Max | Average | St.Dev | WHO standards | % out of the limit | |
---|---|---|---|---|---|---|
Temperature (°C) | 26.5 | 31.3 | 28.6 | 1.5 | - | |
pH | 6.7 | 7.5 | 7.1 | 0.3 | 6.5-8.5 | 0 |
EC (µS/cm) | 280 | 1148 | 691 | 231 | - | |
TDS (mg/L) | 168 | 883 | 538 | 170 | 100 | 0 |
Ca2+ (mg/L) | 25.6 | 101.6 | 49.2 | 22.5 | 100 | |
Mg2+ (mg/L) | 14.1 | 56.9 | 37.4 | 10.6 | 50 | |
Na+ (mg/L) | 1.7 | 88.6 | 36.3 | 22.6 | 150 | 0 |
K+ (mg/L) | 0.7 | 5.2 | 3.1 | 1.3 | 12 | 0 |
(mg/L) | 65.9 | 656.0 | 357.0 | 123.0 | >30 | 0 |
Cl- (mg/L) | 10.7 | 142.0 | 41.0 | 33.8 | 250 | 0 |
(mg/L) | 0.2 | 17.0 | 6.2 | 5.3 | 400 | 0 |
(mg/L) | 0.3 | 25.7 | 7.3 | 6.4 | 50 | 0 |
SiO2 (mg/L) | 17.7 | 61.1 | 37.6 | 9.6 | - | - |
As (µg/L) | < LD | 20.8 | 2.7 | 4.6 | 10 | 5 |
Cu (µg/L) | < LD | 54.5 | 6.0 | 13.1 | 2000 | 0 |
Fe (µg/L) | < LD | 120.6 | 39.7 | 36.6 | 300 | 0 |
Mn (µg/L) | < LD | 34.1 | 6.0 | 9.7 | 80 | 0 |
Pb (µg/L) | 3.9 | 9.2 | 5.9 | 1.5 | 10 | 0 |
Sb (µg/L) | < LD | 2.2 | 0.8 | 0.8 | 20 | 0 |
Sr (µg/L) | < LD | 1170.0 | 365.6 | 350.8 | - | - |
Zn (µg/L) | < LD | 38.6 | 7.7 | 11.6 | 5000 | 0 |
Variables | PC1 | PC2 | PC3 | PC4 | PC5 | PC6 | PC7 |
---|---|---|---|---|---|---|---|
T°C | 0.04 | 0.01 | 0.17 | 0.90 | -0.07 | 0.09 | 0.11 |
pH | 0.56 | 0.46 | -0.19 | -0.39 | 0.14 | 0.14 | -0.11 |
EC | 0.92 | -0.17 | 0.23 | 0.11 | 0.09 | -0.03 | 0.07 |
Ca2+ | 0.42 | -0.35 | 0.68 | 0.27 | -0.02 | -0.08 | 0.24 |
Mg2+ | 0.82 | 0.10 | 0.27 | 0.16 | 0.00 | -0.23 | 0.05 |
Na+ | 0.83 | -0.16 | -0.21 | -0.01 | 0.19 | 0.20 | -0.11 |
K+ | 0.21 | 0.87 | -0.15 | -0.07 | -0.18 | -0.12 | -0.09 |
0.95 | -0.08 | -0.08 | 0.09 | 0.13 | -0.08 | 0.10 | |
Cl- | 0.04 | -0.23 | 0.86 | 0.07 | -0.12 | 0.31 | 0.06 |
-0.16 | -0.04 | 0.59 | -0.66 | 0.02 | 0.14 | 0.08 | |
-0.06 | 0.47 | 0.61 | -0.07 | 0.14 | -0.49 | -0.14 | |
SiO2 | -0.11 | -0.10 | 0.04 | 0.00 | -0.97 | -0.04 | 0.04 |
As | 0.51 | 0.04 | 0.05 | 0.29 | 0.20 | 0.59 | 0.25 |
Cu | -0.24 | 0.89 | -0.07 | -0.12 | 0.05 | 0.22 | 0.08 |
Fe | -0.34 | 0.16 | 0.10 | -0.35 | 0.06 | 0.37 | -0.62 |
Mn | -0.18 | 0.21 | 0.16 | 0.00 | -0.09 | 0.90 | -0.10 |
Pb | -0.21 | 0.08 | 0.01 | 0.06 | -0.92 | 0.07 | 0.09 |
Sb | -0.05 | -0.09 | 0.15 | -0.07 | -0.09 | 0.09 | 0.91 |
Sr | 0.33 | -0.30 | 0.01 | 0.54 | 0.10 | 0.36 | -0.20 |
Zn | -0.35 | 0.78 | -0.06 | 0.24 | 0.20 | 0.15 | -0.31 |
Eigenvalue | 5.23 | 3.29 | 2.19 | 2.07 | 1.90 | 1.56 | 1.20 |
Explained Variance (%) | 26.16 | 16.47 | 10.96 | 10.37 | 9.52 | 7.78 | 6.01 |
Cumulative Variance (%) | 26.16 | 42.63 | 53.59 | 63.97 | 73.48 | 81.27 | 87.27 |
EC | Eletrical Conductivity |
TDS | Total Dissolved Solids |
WHO | World Health Organization |
[1] | B. R. Scanlon, S. Fakhreddine, A. Rateb, I. de Graaf, J. Famiglietti, T. Gleeson, R. Q. Grafton, E. Jobbagy, S. Kebede, S. R. Kolusu, L. F. Konikow, D. Long, M. Mekonnen, H. M. Schmied, A. Mukherjee, A. MacDonald, R. C. Reedy, M. Shamsudduha, C. T. Simmons, A. Sun, R. G. Taylor, K. G. Villholth, C. J. Vörösmarty, C. Zheng, Global water resources and the role of groundwater in a resilient water future, Nat Rev Earth Environ 4 (2023) 87–101. |
[2] | A. Patel, S. P. Rai, N. Puthiyottil, A. K. Singh, J. Noble, R. Singh, D. Hagare, U. D. Saravana Kumar, N. Rai, K. Venyo Akpataku, Refining aquifer heterogeneity and understanding groundwater recharge sources in an intensively exploited agrarian dominated region of the Ganga Plain, Geoscience Frontiers (2024) 101808. |
[3] | K.S. Joshi, S. Gupta, R. Sinha, L.A. Densmore, P.S. Rai, S. Shekhar, P.J. Mason, W.M. van Dijk, Strongly heterogeneous patterns of groundwater depletion in northwestern India, Journal of Hydrology (2021) 126492. |
[4] | D. J. Lapworth, D. C. W. Nkhuwa, J. Okotto-Okotto, S. Pedley, M. E. Stuart, M. N. Tijani, Urban Groundwater Quality in Sub-Saharan Africa: Current Status and Implications for Water Security and Public Health., Hydrogeology Journal, 25, 1093-1116 (2017). |
[5] | S. Giri, A. K. Tiwari, M. K. Mahato, A. K. Singh, Spatio-temporal variations of metals in groundwater from an iron mining impacted area: Assessing sources and human health risk, (2023). |
[6] | E. Abascal, L. Gómez-Coma, I. Ortiz, A. Ortiz, Global diagnosis of nitrate pollution in groundwater and review of removal technologies, Science of The Total Environment 810 (2022) 152233. |
[7] | K. Nitasha, T. Sanjiv, Influences of natural and anthropogenic factors on surface and groundwater quality in rural and urban areas, Frontiers in Life Science, 8: 1, 23-39 (2015). |
[8] | S. M. Shirazi, M. I. Adham, N. H. Zardari, Z. Ismail, H. M. Imran, M. A. Mangrio, Groundwater Quality and Hydrogeological Characteristics of Malacca State in Malaysia, (2015). |
[9] | A. V. Ontiveros-Terrazas, A. Villalobos-Aragón, V. V. Espejel-García, D. Espejel-García, Groundwater Quality and Its Impact on Health: A Preliminary Evaluation of Dental Fluorosis in Julimes, Chihuahua, Mexico, Journal of Water Resource and Protection 12 (2020) 545–557. |
[10] | A. Bodian, A. Dezetter, L. Diop, A. Deme, K. Djaman, A. Diop, Future Climate Change Impacts on Streamflows of Two Main West Africa River Basins: Senegal and Gambia, Hydrology 5 (2018) 21. |
[11] | M. Barbieri, M. D. Barberio, F. Banzato, A. Billi, T. Boschetti, S. Franchini, F. Gori, M. Petitta, Climate change and its effect on groundwater quality, Environ Geochem Health 45 (2023) 1133–1144. |
[12] | GIRE-Togo, Pan d’actions national de gestion intégrée des ressources en eau-Togo, (2010). |
[13] | PNACC-Togo, Plan National d’Adaption aux Changements Climatiques du Togo (PNACC), 2017. |
[14] | K. V. Akpataku, M. D. T. Gnazou, T. Y. A. Nomesi, P. Nambo, K. Doni, L. M. Bawa, G. Djaneye-Boundjou, Physicochemical and Microbiological Quality of Shallow Groundwater in Lomé, Togo, Journal of Geoscience and Environment Protection 8 (2020) 162–179. |
[15] | B. T. Bissang, A. J. Aragón-Barroso, G. Baba, J. González-López, F. Osorio, Integrated Assessment of Heavy Metal Pollution and Human Health Risks in Waters from a Former Iron Mining Site: A Case Study of the Canton of Bangeli, Togo, Water 16 (2024) 471. |
[16] | L. Tampo, S.-L. Alfa-Sika Mande, A. O. Adekanmbi, G. Boguido, K. V. Akpataku, M. Ayah, I. Tchakala, M. D. T. Gnazou, L. M. Bawa, G. Djaneye-Boundjou, E. H. Alhassan, Treated wastewater suitability for reuse in comparison to groundwater and surface water in a peri-urban area: Implications for water quality management, Science of The Total Environment 815 (2022) 152780. |
[17] | F. PNUD, Proposition de services dans le secteur de l’eau – Politiques et stratégies de gestion intégrée des ressources en eau (GIRE). TOG/00/008/A/08/01. Document de service d’appui à l’élaboration de politiques et de programmes (SAEPP), (2001). |
[18] | S. M. Alfa-Sika, I. Tchakala, H. Chen, G. D. Boundjou, L. M. Bawa, Hydrochemical control of groundwater quality in an urban area of Lome aquifer, Togo, Int J Chem Sci. 15(4): 203 (2017). |
[19] | A. Sodomon, A.-S. Seyf-Laye, A. A. Dougna, A. Mouleika, Wells and boreholes physicochemical water quality evaluation in the Atakpamé commune under agriculture and municipal wastewater impact, International Journal of Natural and Engineering Sciences 10(5) (2021) 62–72. |
[20] | K. V. Akpataku, Apports de l’hydrogéochimie et de l’hydrologie isotopique à la compréhension du fonctionnement des aquifères en zones de socle dans la Région des Plateaux au Togo, Thèse de Doctorat Unique, Université de Lomé, Togo, 2018. |
[21] |
M. Ani, Fonctionnement des aquifères des socle Ouest-Africain par une approche combinée: hydroclimatologie, hydrogéologie, hydrogéochimie - Application au bassin versant de la rivière Kara au Nord du Togo, These de Doctorat, Université de Reims Champagne-Ardenne, 2023.
https://theses.fr/s251328 (accessed June 5, 2024). |
[22] | A. A. Dougna, M. D.-T. Gnazou, T. Kodom, G. Djaneye-Boundjou, M. L. Bawa, Physico-chimie et qualité des eaux des forages d’hydraulique villageoise dans la région centrale au Togo, International Journal of Biological and Chemical Sciences 9 (2015) 2249. |
[23] | M. Tchanadema, M. Ayah, T. Kodom, P. Nambo, L. M. Bawa, G. Djaneye-Boundjou, Risks of chemical pollution on the environment by solid mine waste at the semi-industrial iron mining site in Bandjeli, Togo, (2021). |
[24] | M. Lamouroux, Carte pédologique du Togo au 1/1.000. 000, (1969). |
[25] | A. Blot, P. Affaton, K. F. Seddoh, A. P. Aregba, S. K. Godonou, F. Lenoir, J.-J. Drouet, NkouéTh. Simpara, P. Magat, Phosphates du Protérozoïque supérieur dans la chaîne des Dahomeyides (circa 600 Ma) de la région de Bassar (Nord-Togo, Afrique de l’Ouest, Journal of African Earth Sciences (and the Middle East) 7 (1988) 159–166. |
[26] | G. Kissao, F. Fussi, F. Asplund, Etude de faisabilité des forages manuels au Togo: Identification des zones potentiellement favorables, 2009. |
[27] | Rodier, Analyse de l’eau: eaux naturelles, eaux résiduaires, eau de mer, 9ème éd, Dunod, Paris, 2009. |
[28] | AFNOR., Eaux, méthodes d’essai., (1996). |
[29] | A. C. King, M. Raiber, M. E. Cox, Multivariate statistical analysis of hydrochemical data to assess alluvial aquifer–stream connectivity during drought and flood: Cressbrook Creek, southeast Queensland, Australia, Hydrogeology Journal 22 (2014) 481–500. |
[30] | A. Patel, S. P. Rai, K. V. Akpataku, N. Puthiyottil, A. K. Singh, N. Pant, R. Singh, P. Rai, J. Noble, Hydrogeochemical characterization of groundwater in the shallow aquifer system of Middle Ganga Basin, India, Groundwater for Sustainable Development 21 (2023) 100934. |
[31] | K. V. Akpataku, M. D. T. Gnazou, G. Djanéyé-Boundjou, L. M. Bawa, S. Faye, Role of Natural and Anthropogenic Influence on the Salinization of Groundwater from Basement Aquifers in the Middle Part of Mono River Basin, Togo, Journal of Environmental Protection 11 (2020) 1030–1051. |
[32] | A. M. Piper, A graphic procedure in the geochemical interpretation of water-analyses, Transactions, American Geophysical Union 25 (1944) 914. |
[33] | R. J. Gibbs, Mechanisms Controlling World Water Chemistry, Science 170 (1970) 1088–1090. |
[34] | Ph. Blanc, A. Lassin, P. Piantone, M. Azaroual, N. Jacquemet, A. Fabbri, E. C. Gaucher, Thermoddem: A geochemical database focused on low temperature water/rock interactions and waste materials, Applied Geochemistry 27 (2012) 2107–2116. |
[35] |
WHO, Guidelines for drinking-water quality: incorporating the first and second addenda, World Health Organization, Geneva, Switzerland, 2022.
https://books.google.com/books?hl=fr&lr=&id=x3RyEAAAQBAJ&oi=fnd&pg=PR3&ots=73TphxTQd7&sig=lLVAg1yIE6nzASYe-6TapHjGc9A (accessed June 22, 2024). |
[36] | T. Riedel, Temperature-associated changes in groundwater quality, Journal of Hydrology 572 (2019) 206–212. |
[37] | B. Banoeng-Yakubo, S. M. Yidana, N. Emmanuel, T. Akabzaa, D. Asiedu, Analysis of groundwater quality using water quality index and conventional graphical methods: the Volta region, Ghana, Environmental Earth Sciences 59 (2009) 867–879. |
[38] | E. Sunkari, T. Abangba, A. Ewusi, S. E. K. Tetteh, E. Ofosu, Hydrogeochemical evolution and assessment of groundwater quality for drinking and irrigation purposes in the Gushegu Municipality and some parts of East Mamprusi District, Ghana, Environmental Monitoring and Assessment 195 (2023). |
[39] | S. Zoulgami, M. D. T. Gnazou, T. Kodom, G. Djaneye-Boundjou, L. M. Bawa, Physico-chemical study of groundwater in the Northeast of Kara region (Togo), International Journal of Biological and Chemical Sciences 9 (2015) 1711–1724. |
[40] | P. Nijesh, K. V. Akpataku, A. Patel, P. Rai, S. P. Rai, Spatial variability of hydrochemical characteristics and appraisal of water quality in stressed phreatic aquifer of Upper Ganga Plain, Uttar Pradesh, India, Environ Earth Sci 80 (2021) 1–15. |
[41] | G. Anornu, A. Gibrilla, D. Adomako, Tracking nitrate sources in groundwater and associated health risk for rural communities in the White Volta River basin of Ghana using isotopic approach (δ 15 N, δ 18 O NO 3 and 3 H), Science of The Total Environment 603–604 (2017) 687–698. |
[42] | K. V. Akpataku, Hydrochemical and Isotopic Characterization of Groundwater in the Southeastern Part of the Plateaux Region, Togo., Hydrological Sciences Journal, 64, 983-1000. (2019). |
[43] | K. V. Akpataku, M. D.-T. Gnazou, L. M. Bawa, G. Djaneye, S. Faye, Etude hydrogéochimique du système aquifère granito-gneissique dans la préfecture du Moyen-Mono, Togo, Afrique Science 12 (2016) 38–53. |
[44] | A. Sodomon, A.-S. Seyf-Laye, L. Tampo, K. Akpataku, M. Sedou, K. Kossi, Hydrochemical Assessment and Quality of Groundwater in Tchamba Prefecture, Upstream of the Mono River Basin, Togo, American Journal of Water Resources 11 (2023) 142–148. |
[45] | E. Sunkari, R. Iddrisu, J. Turkson, M. Okyere, A. Ataro Ambushe, Hydrogeochemical evaluation of groundwater evolution and quality in some Voltaian aquifers of Kintampo South District, Bono East Region, Ghana: Implications from chemometric analysis, geochemical modeling and geospatial mapping techniques, HydroResearch 8 (2024). |
[46] | S. P. Rai, K. V. Akpataku, J. Noble, A. Patel, S. Kumar Joshi, Hydrochemical evolution of groundwater in northwestern part of the Indo-Gangetic Basin, India: A geochemical and isotopic approach, Geoscience Frontiers 14 (2023) 101676. |
[47] | K. V. Akpataku, A. A. Dougna, A. K. Sodomon, M. Ani, S.-L. Alfa-Sika Mande, L. M. Bawa, S. Faye, Groundwater Quality Assessment Using Pollution Indices and Human Health Risks Through Exposure to Trace Elements in the City of Kara, Togo, Am. J. Environ. Prot. 13 (2024) 163–174. |
[48] | J. Podgorski, D. Araya, M. Berg, Geogenic manganese and iron in groundwater of Southeast Asia and Bangladesh – Machine learning spatial prediction modeling and comparison with arsenic, Science of The Total Environment 833 (2022) 155131. |
[49] | A. O. Affum, E. E. Kwaansa-Ansah, S. D. Osae, Estimating groundwater geogenic arsenic contamination and the affected population of river basins underlain mostly with crystalline rocks in Ghana, Environmental Challenges 15 (2024) 100898. |
[50] | A. Mukherjee, P. Coomar, S. Sarkar, K. H. Johannesson, A. E. Fryar, M. E. Schreiber, K. M. Ahmed, M. A. Alam, P. Bhattacharya, J. Bundschuh, W. Burgess, M. Chakraborty, R. Coyte, A. Farooqi, H. Guo, J. Ijumulana, G. Jeelani, D. Mondal, D. K. Nordstrom, J. Podgorski, D. A. Polya, B. R. Scanlon, M. Shamsudduha, J. Tapia, A. Vengosh, Arsenic and other geogenic contaminants in global groundwater, Nat Rev Earth Environ 5 (2024) 312–328. |
[51] | A. Alqarawy, Assessment of shallow groundwater aquifer in an arid environment, Western Saudi Arabia, Journal of African Earth Sciences 200 (2023) 104864. |
[52] | M. U. Igboekwe, A. O. Akankpo, I. E. Udoinyang, Hydrochemical Evaluation of Groundwater Quality in Michael Okpara University of Agriculture, Umudike and Its Environs, Southeastern Nigeria, Journal of Water Resource and Protection 03 (2011) 925–929. |
[53] | F. Raji, N. N. Nguyen, C. V. Nguyen, A. V. Nguyen, Lead (II) ions enable the ion-specific effects of monovalent anions on the molecular structure and interactions at silica/aqueous interfaces, Journal of Colloid and Interface Science 662 (2024) 653–662. |
[54] | E. Álvarez-Ayuso, Stabilization and encapsulation of arsenic-/antimony-bearing mine waste: Overview and outlook of existing techniques, Critical Reviews in Environmental Science and Technology 52 (2022) 3720–3752. |
[55] | B. Eichhorn, C. Robion-Brunner, Wood exploitation in a major pre-colonial West African iron production centre (Bassar, Togo), Quaternary International 458 (2017) 158–177. |
[56] | G. Ferreira, C. Lourenzi, J. Comin, A. Loss, E. Girotto, M. Ludwig, J. Freiberg, D. Camera, C. Marchezan, N. Moreira Palermo, G. Scopel, A. Thoma, A. Charopem, J. Moura-Bueno, G. Drescher, G. Brunetto, Effect of organic and mineral fertilizers applications in pasture and no-tillage system on crop yield, fractions and contaminant potential of Cu and Zn, Soil and Tillage Research 225 (2023) 105523. |
[57] | M. Shahid, A. K. Shukla, P. Bhattacharyya, R. Tripathi, S. Mohanty, A. Kumar, B. Lal, P. Gautam, R. Raja, B. B. Panda, B. Das, A. K. Nayak, Micronutrients (Fe, Mn, Zn and Cu) balance under long-term application of fertilizer and manure in a tropical rice-rice system, J Soils Sediments 16 (2016) 737–747. |
[58] | J. J. Małecki, M. Kadzikiewicz-Schoeneich, Y. Eckstein, M. Szostakiewicz-Hołownia, T. Gruszczyński, Mobility of copper and zinc in near-surface groundwater as a function of the hypergenic zone lithology at the Kampinos National Park (Central Poland), Environ Earth Sci 76 (2017) 276. |
[59] | K. Kim, N. Rajmohan, H.-J. Kim, S.-H. Kim, G.-S. Hwang, S.-T. Yun, B. Gu, M. J. Cho, S.-H. Lee, Evaluation of geochemical processes affecting groundwater chemistry based on mass balance approach: a case study in Namwon, Korea, Geochemical Journal 39 (2005) 357–369. |
[60] | J. Chen, X. Wu, J. Zhao, S. Liu, Y. Zhang, J. Liu, Z. Gao, Hydrochemical Characteristics, Controlling Factors and Strontium Enrichment Sources of Groundwater in the Northwest Plain of Shandong Province, China, Water 16 (2024) 550. |
[61] | N. Simpara, J. Sougy, R. Trompette, Lithostratigraphie et structure du Buem unité externe de la chaine panafricaine des Dahomeyides dans la region de Bassar (Togo), Journal of African Earth Sciences 3 (1985) 479–486. |
[62] | R. Kumar, C. Jing, L. Yan, A critical review on arsenic and antimony adsorption and transformation on mineral facets, Journal of Environmental Sciences (2024). |
[63] | J. Gaillardet, B. Dupré, P. Louvat, C. J. Allegre, Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers, Chemical Geology 159 (1999) 3–30. |
[64] | J. Morán-Ramírez, R. Ledesma-Ruiz, J. Mahlknecht, J. A. Ramos-Leal, Rock–water interactions and pollution processes in the volcanic aquifer system of Guadalajara, Mexico, using inverse geochemical modeling, Applied Geochemistry 68 (2016) 79–94. |
[65] | V. Robin, E. Tertre, D. Beaufort, O. Regnault, P. Sardini, M. Descostes, Ion exchange reactions of major inorganic cations (H+, Na+, Ca2+, Mg2+ and K+) on beidellite: Experimental results and new thermodynamic database. Toward a better prediction of contaminant mobility in natural environments, Applied Geochemistry 59 (2015) 74–84. |
APA Style
Akpataku, K. V., Tchapo, K., Dougna, A. A., Ani, M., Sodomon, A. K., et al. (2025). Hydrogeochemical Characteristics of Groundwater in the Prefecture of Bassar, Togo. American Journal of Chemical Engineering, 13(1), 1-13. https://doi.org/10.11648/j.ajche.20251301.11
ACS Style
Akpataku, K. V.; Tchapo, K.; Dougna, A. A.; Ani, M.; Sodomon, A. K., et al. Hydrogeochemical Characteristics of Groundwater in the Prefecture of Bassar, Togo. Am. J. Chem. Eng. 2025, 13(1), 1-13. doi: 10.11648/j.ajche.20251301.11
@article{10.11648/j.ajche.20251301.11, author = {Kossitse Venyo Akpataku and Kossi Tchapo and Akpénè Amenuvevega Dougna and Mozimwè Ani and Agbessi Koffi Sodomon and Seyf-Laye Alfa-Sika Mande and Limam Moctar Bawa and Serigne Faye}, title = {Hydrogeochemical Characteristics of Groundwater in the Prefecture of Bassar, Togo }, journal = {American Journal of Chemical Engineering}, volume = {13}, number = {1}, pages = {1-13}, doi = {10.11648/j.ajche.20251301.11}, url = {https://doi.org/10.11648/j.ajche.20251301.11}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajche.20251301.11}, abstract = {This study aims to assess the factors and geochemical processes controlling groundwater quality in the prefecture of Bassar. It is a major yam tubers and pre-colonial West African iron production center in Togo but with limited investigations on groundwater chemistry. Conventional hydrochemical techniques with geochemical mass balance calculations, intervariables correlation, and factor analysis with principal component methods were applied to a chemical database of major ions and heavy metals concentrations of twenty borehole water samples. These groundwater samples were collected during the dry season and analyzed following AFNOR standard methods for the examination of water. The results showed fresh and circumneutral groundwater types with pH values between 6.7 and 7.5 with an average of 7.1 and EC between 280 and 1148 µS/cm and an average of 691 µS/cm. All the hydrochemical parameters comply with the WHO drinking water guideline value except Arsenic content for 5 % of the samples, suggesting potential health risks for residents relying on raw groundwater for drinking purposes. Anions and cations' contributions to groundwater mineralization are in the order of HCO3-> Cl- > SO42- > NO3- and Ca2+ > Mg2+ > Na+ > K+, respectively. The main hydrochemical facies were mixed cations-HCO3 water types, followed by accessory Ca-HCO3, Mg-HCO3, Ca-Mg-Cl, and Mg-Na-HCO3, under the control of water-rock interaction mechanisms and human activities influence from agriculture practices. The geochemical processes are silicate minerals hydrolysis, carbonate, and soil salts dissolution, sorption, and cations exchange with the thermodynamic equilibrium of groundwater with kaolinite, muscovite, K-feldspar, and smectites such as Mg-montmorillonite solid phases. Fe/Mn-(hydr)oxide phases in the aquifer matrix exert significant control on the mobility of As and Sb originating from geogenic sources in the study area. This study provides insight into the factors and geochemical processes controlling the groundwater quality, as a baseline tool for water security concerning major and trace constituents in the Bassar prefecture. }, year = {2025} }
TY - JOUR T1 - Hydrogeochemical Characteristics of Groundwater in the Prefecture of Bassar, Togo AU - Kossitse Venyo Akpataku AU - Kossi Tchapo AU - Akpénè Amenuvevega Dougna AU - Mozimwè Ani AU - Agbessi Koffi Sodomon AU - Seyf-Laye Alfa-Sika Mande AU - Limam Moctar Bawa AU - Serigne Faye Y1 - 2025/01/31 PY - 2025 N1 - https://doi.org/10.11648/j.ajche.20251301.11 DO - 10.11648/j.ajche.20251301.11 T2 - American Journal of Chemical Engineering JF - American Journal of Chemical Engineering JO - American Journal of Chemical Engineering SP - 1 EP - 13 PB - Science Publishing Group SN - 2330-8613 UR - https://doi.org/10.11648/j.ajche.20251301.11 AB - This study aims to assess the factors and geochemical processes controlling groundwater quality in the prefecture of Bassar. It is a major yam tubers and pre-colonial West African iron production center in Togo but with limited investigations on groundwater chemistry. Conventional hydrochemical techniques with geochemical mass balance calculations, intervariables correlation, and factor analysis with principal component methods were applied to a chemical database of major ions and heavy metals concentrations of twenty borehole water samples. These groundwater samples were collected during the dry season and analyzed following AFNOR standard methods for the examination of water. The results showed fresh and circumneutral groundwater types with pH values between 6.7 and 7.5 with an average of 7.1 and EC between 280 and 1148 µS/cm and an average of 691 µS/cm. All the hydrochemical parameters comply with the WHO drinking water guideline value except Arsenic content for 5 % of the samples, suggesting potential health risks for residents relying on raw groundwater for drinking purposes. Anions and cations' contributions to groundwater mineralization are in the order of HCO3-> Cl- > SO42- > NO3- and Ca2+ > Mg2+ > Na+ > K+, respectively. The main hydrochemical facies were mixed cations-HCO3 water types, followed by accessory Ca-HCO3, Mg-HCO3, Ca-Mg-Cl, and Mg-Na-HCO3, under the control of water-rock interaction mechanisms and human activities influence from agriculture practices. The geochemical processes are silicate minerals hydrolysis, carbonate, and soil salts dissolution, sorption, and cations exchange with the thermodynamic equilibrium of groundwater with kaolinite, muscovite, K-feldspar, and smectites such as Mg-montmorillonite solid phases. Fe/Mn-(hydr)oxide phases in the aquifer matrix exert significant control on the mobility of As and Sb originating from geogenic sources in the study area. This study provides insight into the factors and geochemical processes controlling the groundwater quality, as a baseline tool for water security concerning major and trace constituents in the Bassar prefecture. VL - 13 IS - 1 ER -