The solid– state fuel cell is the most widely adopted energy– generating technology in the world for which different oxide– ion conductors of pervoskite structures have been recently investigated for the application in the intermediate temperature– solid oxide fuel cells (IT–SOFCs). In the present work, samples of single substituted BIMEVOX i.e., BIBIVOX (Bi2V1–xBixO5.5–x/2) were prepared in the composition range 0 ≥ x ≥ 0.20 using bottom up sol–gel method. XRPD, FT–IR, DTA, SEM, EDS, and AC impedance spectroscopy were used for the investigation of the correlation between the structural phase stability and oxide– ion performance of the BIBIVOX materials. It has been found that orthorhombic, β, and incommensurate tetragonal, γ′–phases were stabilized at room temperature for compositions with x=0.15 and x=0.20, respectively. The enthalpy of β–γ and γ′–γ transition exhibited a general drop with increasing Bi content. The higher value of conductivity of the substituted compound as compared to the parent compound can be attributed to the increased oxygen vacancies generated as a result of cation doping. AC impedance spectroscopy reveals the fact that this ionic conductivity is mainly due to the grain contribution.
Published in | American Journal of Chemical Engineering (Volume 5, Issue 6) |
DOI | 10.11648/j.ajche.20170506.19 |
Page(s) | 169-176 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2017. Published by Science Publishing Group |
BIBIVOX, Phase Transitions, Ac Impedance, Ionic Conductivity
[1] | B. C. H. Steele, High Conductivity Solid Ionic Conductors, Recent Trends and Applications, ed. T. Takahashi, World Scientific, Singapore, 1989. |
[2] | T. Takahashi, H. Iwahara and T. Arao. J Appl Electrochem 1975; 5: 187. |
[3] | N. M. Sammes, G. A. Tompsett, H. Nafe and F. Aldinger. J Eur Ceram Soc 1999; 19: 1801. |
[4] | V. V. Kharton, F. M. B. Marques and A. Atkinson. Solid State Ionics 2004; 174: 135. |
[5] | F. Abraham, M. F. Debreuille–Gresse, G. Mairesse and G. Nowogrocki. Solid State Ionics 1988; 28–30: 529. |
[6] | F. Abraham, J. C. Boivin, G. Mairesse and G. Nowogrocki, Solid State Ionics 1990; 40–41: 934. |
[7] | E. Pernot, M. Anne, M. Bacmann, P. Strobel, J. Fouletier, G. Mairesse, F. Abraham and G. Nowogrocki. Solid State Ionics 1994; 70–71: 259. |
[8] | O. Joubert, A. Jouanneaux, M. Ganne, R. N. Vannier and G. Mairesse. Solid State Ionics 1994; 73: 309. |
[9] | S. Beg, N. A. S. Al–Areqi and S. Haneef. Solid State Ionics 2008; 179: 2260. |
[10] | S. Beg, S. Hafeez and N. A. S. Al–Areqi. Solid State Ionics 2014; 261: 125. |
[11] | S. Beg, N. A. S. Al–Areqi, A. Al–Alas and S. Hafeez. Ionics 2014; 20:269. |
[12] | S. Beg, N. A. S. Al–Areqi, S. Hafeez and A. Al–Alas. Ionics 2015; 21:421. |
[13] | A. Al–Alas, S. Beg, N. A. S. Al–Areqi and S. Hafeez. J Eur Ceram Soc 2013; 33: 2111. |
[14] | S. Beg, A. Al–Alas and N. A. S. Al–Areqi. J Alloys Compds 2010; 504: 413. |
[15] | M. Huve, R. N. Vannier, G. Nowogrocki, G. Mairesse, G. V. Tendeloo. J Mater Chem 1996; 6: 1339. |
[16] | R. D. Shannon. Acta Crystallogr 1976; A 32: 751. |
[17] | S. Lazure, R. N. Vannier, G. Nowogrocki, M. Anne and P. Strobel. J Mater Chem 1995; 5: 1395. |
[18] | N. S. A. Al–Areqi, S. Beg and A. Al–Alas. J Phys Chem. Solids 2012; 73: 730. |
[19] | O. Joubert, M. Ganne, R. N. Vannier and G. Mairesse. Solid State Ionics 1996; 83: 199. |
[20] | A. Zhang and J. Zhang. J Hazard Mater 2010; 173: 265. |
[21] | M. Guillodo, J. Fouletier, L. Dessemond and P.D. Gallo. J Eur Ceram Soc 2001; 21: 2331. |
[22] | M. J. Godinoh, P. R. Bueno, M. O. Orlandi, E. R. Leite and E. Longo. Mater Lett 2003; 57: 2540. |
[23] | A. Kezionis, W. Bogusz, F. Krok, J. Dygas, A. Orliukas, I. Abrahams and W. Gebicki. Solid State Ionics 1999; 119: 145. |
APA Style
Elyas Sadeq Alaghbari, Sameh Abdulgalil Shaher Alariqi, Niyazi Abdulmawla Sallam Al–Areqi, Saba Beg, Faria Khan Naqvi. (2017). Investigation on Phase Stability and Electrical Properties Bi2V1–xBixO5.5–x/2 (BIBIVOX) Solid Electrolyte for Intermediate Temperature – Solid Oxide Fuel Cells (IT–SOFCs). American Journal of Chemical Engineering, 5(6), 169-176. https://doi.org/10.11648/j.ajche.20170506.19
ACS Style
Elyas Sadeq Alaghbari; Sameh Abdulgalil Shaher Alariqi; Niyazi Abdulmawla Sallam Al–Areqi; Saba Beg; Faria Khan Naqvi. Investigation on Phase Stability and Electrical Properties Bi2V1–xBixO5.5–x/2 (BIBIVOX) Solid Electrolyte for Intermediate Temperature – Solid Oxide Fuel Cells (IT–SOFCs). Am. J. Chem. Eng. 2017, 5(6), 169-176. doi: 10.11648/j.ajche.20170506.19
AMA Style
Elyas Sadeq Alaghbari, Sameh Abdulgalil Shaher Alariqi, Niyazi Abdulmawla Sallam Al–Areqi, Saba Beg, Faria Khan Naqvi. Investigation on Phase Stability and Electrical Properties Bi2V1–xBixO5.5–x/2 (BIBIVOX) Solid Electrolyte for Intermediate Temperature – Solid Oxide Fuel Cells (IT–SOFCs). Am J Chem Eng. 2017;5(6):169-176. doi: 10.11648/j.ajche.20170506.19
@article{10.11648/j.ajche.20170506.19, author = {Elyas Sadeq Alaghbari and Sameh Abdulgalil Shaher Alariqi and Niyazi Abdulmawla Sallam Al–Areqi and Saba Beg and Faria Khan Naqvi}, title = {Investigation on Phase Stability and Electrical Properties Bi2V1–xBixO5.5–x/2 (BIBIVOX) Solid Electrolyte for Intermediate Temperature – Solid Oxide Fuel Cells (IT–SOFCs)}, journal = {American Journal of Chemical Engineering}, volume = {5}, number = {6}, pages = {169-176}, doi = {10.11648/j.ajche.20170506.19}, url = {https://doi.org/10.11648/j.ajche.20170506.19}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajche.20170506.19}, abstract = {The solid– state fuel cell is the most widely adopted energy– generating technology in the world for which different oxide– ion conductors of pervoskite structures have been recently investigated for the application in the intermediate temperature– solid oxide fuel cells (IT–SOFCs). In the present work, samples of single substituted BIMEVOX i.e., BIBIVOX (Bi2V1–xBixO5.5–x/2) were prepared in the composition range 0 ≥ x ≥ 0.20 using bottom up sol–gel method. XRPD, FT–IR, DTA, SEM, EDS, and AC impedance spectroscopy were used for the investigation of the correlation between the structural phase stability and oxide– ion performance of the BIBIVOX materials. It has been found that orthorhombic, β, and incommensurate tetragonal, γ′–phases were stabilized at room temperature for compositions with x=0.15 and x=0.20, respectively. The enthalpy of β–γ and γ′–γ transition exhibited a general drop with increasing Bi content. The higher value of conductivity of the substituted compound as compared to the parent compound can be attributed to the increased oxygen vacancies generated as a result of cation doping. AC impedance spectroscopy reveals the fact that this ionic conductivity is mainly due to the grain contribution.}, year = {2017} }
TY - JOUR T1 - Investigation on Phase Stability and Electrical Properties Bi2V1–xBixO5.5–x/2 (BIBIVOX) Solid Electrolyte for Intermediate Temperature – Solid Oxide Fuel Cells (IT–SOFCs) AU - Elyas Sadeq Alaghbari AU - Sameh Abdulgalil Shaher Alariqi AU - Niyazi Abdulmawla Sallam Al–Areqi AU - Saba Beg AU - Faria Khan Naqvi Y1 - 2017/12/20 PY - 2017 N1 - https://doi.org/10.11648/j.ajche.20170506.19 DO - 10.11648/j.ajche.20170506.19 T2 - American Journal of Chemical Engineering JF - American Journal of Chemical Engineering JO - American Journal of Chemical Engineering SP - 169 EP - 176 PB - Science Publishing Group SN - 2330-8613 UR - https://doi.org/10.11648/j.ajche.20170506.19 AB - The solid– state fuel cell is the most widely adopted energy– generating technology in the world for which different oxide– ion conductors of pervoskite structures have been recently investigated for the application in the intermediate temperature– solid oxide fuel cells (IT–SOFCs). In the present work, samples of single substituted BIMEVOX i.e., BIBIVOX (Bi2V1–xBixO5.5–x/2) were prepared in the composition range 0 ≥ x ≥ 0.20 using bottom up sol–gel method. XRPD, FT–IR, DTA, SEM, EDS, and AC impedance spectroscopy were used for the investigation of the correlation between the structural phase stability and oxide– ion performance of the BIBIVOX materials. It has been found that orthorhombic, β, and incommensurate tetragonal, γ′–phases were stabilized at room temperature for compositions with x=0.15 and x=0.20, respectively. The enthalpy of β–γ and γ′–γ transition exhibited a general drop with increasing Bi content. The higher value of conductivity of the substituted compound as compared to the parent compound can be attributed to the increased oxygen vacancies generated as a result of cation doping. AC impedance spectroscopy reveals the fact that this ionic conductivity is mainly due to the grain contribution. VL - 5 IS - 6 ER -