Coumarins of natural origin have been explored as potential inhibitors of P-glycoprotein (P-gp). Esculetin which belongs to the class of coumarin has been derivatized with known hydrazine pharmacophores viz; benzoyl hydrazine (BH), isonicotinyl hydrazine (INH), and hydrazino benzoic acid. The homology modeling approach was used to predict the three-dimensional structure of human P-gp. An in-silico study has been performed for the structural insight into the molecular mechanism of P-gp inhibition of the esculetin derivatives by molecular docking (MD) and simulation studies. The cell cytotoxic activities of the synthesized compounds were evaluated using in-vitro studies. The sublines resistant doxorubicin (MCF-7/R) were generated and the activities of P-gp proteins were estimated using fluorescent dye accumulation assays. The E-BH showed promising P-gp inhibitory activity and cell cytotoxicity against MCF7 and MCF7/R (resistant) breast cancer cell lines. In line with experimental observations, the E-BH (Esculetin benzoyl hydrazine) has yielded the lowest energy stable complex with P-gp and is stabilized by intermolecular hydrogen bonding and more hydrophobic interactions during 100 ns of simulation. This suggested that the activity of P-gp is probably controlled by hydrophobic interactions. Performed experimental and computational studies has helped to elucidate the mechanism of P-gp inhibition by E-BH. Thus, amongst the three derivatives; E-BH exhibits greater efficacy in blocking the efflux mechanism.
Published in | American Journal of Biomedical and Life Sciences (Volume 12, Issue 3) |
DOI | 10.11648/j.ajbls.20241203.12 |
Page(s) | 30-48 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2024. Published by Science Publishing Group |
Esculetin Hydrazine Derivatives, Pgp Inhibitors, Homology Modeling, Docking, Molecular Dynamics Simulation
Drug | M of Esculetin derivatives (IC50) |
---|---|
Esculetin | 135.5±22.6 |
E-INH | 16.3±1.6 |
E-BH | 8.4±1.83 |
E-HBA | 11.6±2.1 |
Verapamil | 15.1±2.3 |
Amino acid regions | Transmembrane Domains No. | Amino acid regions | Loop/Turns |
---|---|---|---|
1-86 | Helices/TM1 | 87-96 | Loop |
97-164 | TM2 | 165-169 | Loop |
170-210 | TM3 | 211-212 | Loop |
213-267 | TM4 | 268-269 | Loop |
270-322 | TM5 | 323-329 | Loop |
330-369 | TM6 | 381-626 | NBD1/Helices/Sheets/Loops |
627-683 | Linker Region | 684-698 | Loop |
699-740 | TM7 | 741-746 | Loop |
747-797 | TM8 | 798-810 | Loop |
811-852 | TM9 | 853-855 | Loop |
856-909 | TM10 | 910-912 | Loop |
913-966 | TM11 | 967-976 | Loop |
971-1013 | TM12 | 1014-1026 | Loops |
1027-1280 | NBD2 |
Sr. No. | Atoms Involved 1-2-3 in hydrogen bonding | Distance in Å | Binding Energy in kcal/mol | Fig. Ref. |
---|---|---|---|---|
Benzoyl Hydrazide (E-BH) with P-glycoprotein | ||||
1 | Tyr307-OH.....O4-E-BH | 2.53 | -9.02 | 7B |
2 | Gln725-NE2......O4-E-BH | 2.72 | ||
3 | Phe728, Ala729, Phe732, Leu975, Phe978, Val982 | Hydrophobic interactions | ||
4-Hydrazino Benzoic Acid (E-HBA) with P-glycoprotein | ||||
4 | Tyr307-OH.....O3-E-HBA | 2.76 | -8.60 | S8-A |
5 | Gln725-NE2......O2-E-HBA | 2.59 | ||
6 | Phe72, Phe728, Ala729, Phe732, Leu975, Phe978, Ser979, Val982 | Hydrophobic interactions | ||
Isonicotyl Hydrazide (E-INH) with P-glycoprotein | ||||
7 | Gln725-NE2......O3-E-INH | 2.67 | -8.11 | S8-B |
8 | Gln725-NE2......O4-E-INH | 2.44 | ||
9 | Phe72, Phe728, Ala729, Phe732, Ser733, Ile736, Leu975, Phe978, Val982 | Hydrophobic interactions | ||
Esculetin (E) with P-glycoprotein | ||||
10 | Tyr307-OH.....O3-Esculetin | 2.83 | -6.27 | S8-C |
11 | Tyr307-OH.....O4-Esculetin | 2.61 | ||
12 | Tyr310-OH.......O2-Esculetin | 3.15 | ||
Gln725-NE2......O3-Esculetin | 2.57 | |||
Phe336, Phe728 | Hydrophobic interactions |
E | Esculetin |
E-BH | Esculetin Benzoyl Hydrazine |
E-INH | Esculetin Isonicotinyl Hydrazine |
E-HBA | Esculeting Hydrazine Benzoic Acid |
P-gp | P-glycoprotein |
MCF-7/R | MCF-7/Resistant Cell Lines Expressing P-gp |
MDR | Multidrug Resistance |
MDCK | Madin Darby Canine Kidney Cells |
FTIR | Fourier Transform Infrared Spectroscopy |
NMR | Nuclear Magnetic Resonance |
ANOVA | Analysis of Variance |
NCCS | National Centre for Cell Sciences |
DFT | Density Functional Theory |
LINCS | Linear Constraint Solver for Molecular Simulations |
VMD | Visual Molecular Dynamics |
MTT | 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide |
DOPE | Discrete Optimized Protein Energy |
Below is the link to the supplementary material:
[1] | M. M. Gottesman, C. A. Hrycyna, P. V. Schoenlein, U. A. Germann, I Pastan, Genetic analysis of the multidrug transporter, Annu. Rev. Genet. 29 (1995) 607-649. |
[2] | T. W. Loo, D. M. Clarke, Identification of residues in the drug-binding site of human P- glycoprotein using a thiol-reactive substrate, J. Biol. Chem. 272 (1997) 31945-31948. |
[3] | S. V. Ambudkar, G Kimchi-Sarfaty, Z. E. Suana, M. M. Gottesman, P-glycoprotein: from genomics to mechanism, Oncogene 22 (2003) 7468-7485. |
[4] | P. D. Eckford, F. J. Sharom, ABC efflux pump-based resistance to chemotherapy drugs. Chem. Rev. 109 (2009) 2989-3011. |
[5] | B Marquez, B. F. Van, ABC multidrug transporter: Target for modulation of drug pharmacokinetics and drug-drug interactions. Curr. drug targets 12 (2011) 600-620. |
[6] | S Kunjachan, B Rychlik, G Storm, F Kiessling, T. Lammers, Multidrug resistance: Physiological principles and nanomedical solutions, Adv. Drug Deliv. Rev. 65 (2013) 1852-1865. |
[7] | M. Leopoldo, P. Nardulli, M. Contino, F. Leonetti, G. Luurtsema, N. A. Colabufo. An updated patent revire on P-glycoprotein inhibitors, Expert Opin. Ther. Pat. 29 (2019) 455-461. |
[8] | J. Marcoux, S. C. Wang, A. Ploitis, et al., Mass spectrometry reveals synergetic effects to nucleotides, lipids, and drug binding to a multidrug resistance efflux pump, Proc. Natl. Acad. Sci. U. S. A. 110 (2013) 9704-9709. |
[9] | D. Waghray, Q. Zhang, Inhibit or Evade Multidrug Resistance P-Glycoprotein in Cancer Treatment, J. Med. Chem. 61(2018) 5108-5121. |
[10] | E. N. Yakusheva, D. S. Titov, Structure and Function of Multidrug Resistance Protein-1 Biochemistry (Mosc) 83(2018) 907-929. |
[11] | S. Mollazadeh, A. Sahebkar, F. Hadizadeh, J. Behravan, S. Arabzadeh, Structural and functional aspects of P-glycoprotein and its inhibitors, Life Sci. 214 (2018) 118-123. |
[12] | K. P. Sigdel, L. A. Wilt, B. P. Marsh, A. G. Roberts, G. M. King, The conformation and dynamics of P-glycoprotein in a lipid bilayer investigated by atomic force microscopy, Biochem. Pharmacol. 156 (2018) 302-311. |
[13] | Sajid, N. Raju, S. Lusvarghi, S. Vahedi, R. E. Swenson, S. V. Ambudkar, Synthesis and characterization of Bodpy-FL-cyclosporin A as a substrate for multidrug resistance-linked P-glycoprotein (ABCB1), Drug Metab. Dispos. 47(2019) 1013-1023. |
[14] | W. Guo, W. Dong, M. Li, Y. Shen, Mitochondria P-glycoprotein confers paclitaxel resistance on ovarian cancer cells, Onco. Targets Ther. 12 (2019) 3881-3891. |
[15] | F. Montanari, G. F. Ecker, Prediction of drug-ABC-transporter interaction - Recent advances and future challenges, Adv. Drug Deliv. Rev. 86 (2015) 17-26. |
[16] | J. W. McCormick, P. D. Vogel, J. G. Wise, Multiple drug transport through Human P-Glycoprotein, Biochemistry 54 (2015) 4374-4390. |
[17] | J. Bender, J. Fang, R. Simon, A computational study of the inhibition mechanisms of P-glycoprotein mediated paclitaxel efflux by kinase inhibitors, BMC Syst. Biol. 11 (2017) 1-10. |
[18] | J. Wang, N. Seebacher, H. Shi, Q. Kan, Z. Duan, Novel strategies to prevent the development of multidrug resistance (MDR) in cancer, Oncotarget 8 (2017) 84559-84571. |
[19] | S. Varghese, A. Palaniappan, Computational Pharmacogenetics of P-Glycoprotein Mediated Antiepileptic Drug Resistance. Open Bioinforma J. 11 (2018) 197- 207. |
[20] | L. Domicevica, H. Koldso, P. C. Biggin, Multiscale molecular dynamics simulations of lipid interactions with P-glycoprotein in a complex membrane, J. Mol. Graph. Model. 80 (2018) 147-156. |
[21] | E. Barreto-Ojeda, V. Corradi, R-X. Gu, D. P. Tieleman, Coarse-grained molecular dynamics simulations reveal lipid access pathways in P-glycoprotein, J. Gen. Physiol. 150 (2018) 417-429. |
[22] | L. Wang, L. Zhang, F. Liu, Y. Sun, Molecular energetics of Doxorubicin pumping by human P-glycoprotein, J. Chem. Inf. Model. 59 (2019) 3889-3898. |
[23] | Z. Bikadi, I. Hazal, D. Malik, K. Jemnitz, Z. Veres, P. Hari, Z. Ni, T. W. Loo, D. M. Clarke, E. Hazai, Q. Mao, Predicting P-glycoprotein-mediated drug transport based on support vector macnine and three dimensional crystal structure of P-glycoprotein, Plos One 6 (2011) e25815. |
[24] | L. Chen, Y. Li, H. Yu, L. Zhang, T. Hou, Computational models for predicting substrates or inhibitors of P-glycoprotein, Drug Discov. Today 17(2012) 343-51. |
[25] | R. Prajapati, A. T. Sangamwar, Translocation mechanism of P-glycoprotein and conformational changes occurring at drug-binding site: Insights from multi-targeted molecular dynamics, Biochim. Biophys. Acta Biomembr. 1838 (2014) 2882-2898. |
[26] | M. L. Gonzalez, D. M. A. Vera, J. Laiolo, M. B. Joray, M. Maccioni, S. M. Palacios, G. M. Molina, P. A. Lanza, S. Gancedo, V. Rumjanek, M. C. Carpinella, Mechanism underlying the reversal of drug resistance in P-Glycoprotein-expressing leukemia cells by pinoresinol and the study of a derivative, Front. Pharmacol. 25 (2017) 205. |
[27] | Cui, C. Y. Cai, H. L. Gao, L. Ren, N. Ji, P. Gupta, Y. Yang, S. Shukla, S. V. Ambudkar, D. H. Yang, Z. S. Chen Glesatinib, a c-MET/SMO Dual Inhibitor, Antagonizes P-glycoprotein mediated multidrug resistance in cancer cells, Front. Oncol. 25 (2019) 313. |
[28] | J. G. Wise, Catalytic transitions in the human MDR1 P-glycoprotein drug binding sites, Biochemistry 51 (2012) 5125-5141. |
[29] | P. C. Wen, B. Verhalen, S. Wilkens, H. S. Nchaourab, E. Tajkhorshid, On the origine large flexibility of P-glycoprotein in the inward facing state, J. Biol. Chem. 288 (2013) 19211-19220. |
[30] | J. P. Becker, G. Depret, F. VanBambeke, P. M. Tulkens, M. Prevost, Molecular models of human P-glycoprotein in two different catalytic states, BMC Struct. Biol. 9 (2009) 3.31. J. R. |
[31] | Daddam, M. R. Dowlathabad, S. Panthangi, P. Jasti, Molecular docking and P-glycoprotein inhibitory activity of flavonoids, Interdiscip Sci. 6(2014) 167-175. L. |
[32] | Domicevica, P. C. Biggin, Homology modelling of human P-glycoprotein, Biochem. Soc. Trans. 43 (2015) 952-958. |
[33] | A. Tripathi, K. Misra, Inhibition of P-Glycoprotein Mediated Efflux of Paclitaxel by Coumarin Derivatives in Cancer Stem Cells: An In Silico Approach, Comb Chem High Throughput Screen. 19(2016) 497-506. |
[34] | K. Wang, Y. Zhang, S. I. N. Ekunwe, et al., Antioxidant activity and inhibition effect on the growth of human colon carcinoma (HT-29) cells of esculetin from Cortex Fraxini, Med Chem Res. 20 (2011) 968–974. |
[35] | Y. J. Jeon, J. Y. Jang, J. H. Shim, P. K. Myung, J. I. Chae, Esculetin, a Coumarin Derivative, Exhibits Anti-proliferative and Pro-apoptotic Activity in G361 Human Malignant Melanoma, J Cancer Prev. 20 (2015) 106-12. |
[36] | C. Barthomeuf, J. Grassi, M. Demeule, C. Fournier, D. Boivin, R. Béliveau, Inhibition of P-glycoprotein transport function and reversion of MDR1 multidrug resistance by cnidiadin, Cancer Chemother. Pharmacol. 56 (2005) 173-81. |
[37] | V. Kumar, Hydrazone: A promising pharmacophore in medicinal chemistry, J. Pharmacogn Phytochem. 7(2018) 40-43. |
[38] | N. Duangdee, W. Mahavorasirikul, S. Prateeptongkum, Design synthesis and anti-proliferative activity of some new coumarin substituted hydrazide-hydrazone derivatives, J Chem Sci. 132 (2020) 66. |
[39] | H. Morjani, N. Aouali, R. Belhoussine, R. J. Veldman, T. Levade, M. Manfait, Elevation of glucosylceramide in multidrug-resistant cancer cells and accumulation in cytoplasmic droplets, Int. J. Cancer 94 (2001) 157-165. |
[40] | G. Batist, A. Tulpule, B. K. Sinha, A. G. Katki, C. E. Myers, K. H. Cowan Overexpression of a novel anionic glutathione transferase in multidrug-resistant human breast cancer cells, J. Biol. Chem. 261 (1986) 15544-15549. |
[41] | T. L. Riss, R. A. Moravec, A. L. Niles, et al., Cell Viability Assays. In: Sittampalam GS, Grossman A, Brimacombe K, et al., editors. Assay Guidance Manual [Internet]. Bethesda (MD): Eli Lilly & Company and the National Center for Advancing Translational Sciences, 2016. |
[42] | V. M. Le, E. Jouan, B. Stieger, V. Lecureur, O. Fardel, Regulation of human hepatic drug transporter activity and expression by diesel exhaust particle extract, Plos One 10 (2015) e0121232. |
[43] | B. Webb, A. Sali, Comparative Protein Structure Modeling Using MODELLER, Curr. Protoc. Bioinformatics 54 (2016) 5.6.1-5.6.37. |
[44] | R. A. Laskowski, M. W. MacArthur, D. S. Moss, J. M. Thornton, PROCHECK a program to check the stereochemical quality of protein structures, J. Appl. Crystallography 26 (1993) 283-291. |
[45] | M. Wiederstein, M. J. Sippl, ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins, Nucleic Acids Res. 35 (2007) W407-W410. |
[46] | N. M. Kumbhar, S. K. Nimal, S. Barale, S, Ka.mble, R. S. Bavi, K. D. Sonawane, R. N. Gacche. Identification of novel leads as potent inhibitors of HDAC3 using ligand-based pharmacophore modeling and MD simulation, Scientific Reports, 2022, 12(1): 1712. |
[47] | K. S. Gavale, S. R. Chavan, N. M. Kumbhar, S. Kawade, P. Doshi, A. Khan, D. D. Dhavale, α-Geminal disubstituted pyrrolidine iminosugars and their C-4-fluoro analogues: Synthesis, glycosidase inhibition and molecular docking studies, Bioorg. Med. Chem. 25 (2017) 5148-5159. |
[48] | G. M. Morris, R. Huey, W. Lindstrom, M. F. Sanner, R. K. Belew, D. S. Goodsell, A. J. Olson, Autodock4 and AutoDockTools4: automated docking with selective receptor flexibility, J. Comput. Chem. 16 (2009) 2785-2791. |
[49] | A. D. Becke, Density functional thermochemistry. III. The role of exact exchange, J. Chem. Phys. 98 (1992). 5648-5652. |
[50] | M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., Gaussian, Inc., Wallingford CT, 2009. |
[51] | A. C. Wallace, R. A. Laskowski, Thornton JM LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions, Protein Eng. 8 (1996) 127-134. |
[52] | S. Jo, T. Kim, V. G. Iyer, W. Im, CHARMM-GUI: a web-based graphical user interface for CHARMM, J. Comput. Chem. 29 (2008) 1859-65. |
[53] | J. Lee, X. Cheng, J. M. Swails, M. S. Yeom, P. K. Eastman, J. A. Lemkul, S. Wei, J. Buckner, J. C. Jeong, Y. Qi, S. Jo, V. S. Pande, D. A. Case, C. L. Brooks, A. D. MacKerell, J. B. Klauda, W. Im, CHARMMGUI Input Generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/ OpenMM Simulations Using the CHARMM36 Additive Force Field, J. Chem. Theory Comput. 12 (2016) 405-13. |
[54] | Lomize MA, Pogozheva ID, Joo H, Mosberg HI, Lomize AL, OPM database and PPM web server: resources for positioning of proteins in membranes. Nucleic Acids Res. 2012; 40: D370-D376. |
[55] | M. J. Abraham, T. Murtola, R. Schulz, S. Pall, J. C. Smith, B. Hess, E. Lindahl, GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers, SoftwareX 1 (2015) 19-25. |
[56] | B. Hess. P-LINCS: a parallel linear constraint solver for molecular simulation, J. Chem. Theor. Comput. 4 (2008) 116-122. |
[57] | U. Essmann, L. Perera, M. L. Berkowitz, T. Darden, H. Lee, L. G. Pedersen, A smooth particle mesh Ewald method, J. Chem. Phys. 103 (1995) 8577-8593. |
[58] | W. Humphrey, A. Dalke, K. Schulten, VMD: visual molecular dynamics, J. Mol. Graph. Model. 14 (1996) 33-38. |
[59] | E. F. Pettersen, T. D. Goddard, C. C. Huang, G. S. Couch, D. M. Greenblatt, E. C. Meng, T. E. Ferrin, UCSF chimera -A visualization system for exploratory research and analysis, J. Comput. Chem. 25 (2004) 1605-1612. |
[60] | B. G. Durie, W. S. Dalton, Reversal of drug-resistance in multiple myeloma with verapamil, Br. J. Haematol. 68 (1988) 203-206. |
[61] | T. W. Sweatman, R. Seshadri, M. Israel, Metabolism and elimination of rhodamine 123 in the rat, Cancer Chemother. Pharmacol. 27 (1990) 205-210. |
[62] | R. Yumoto, T. Murakami, M. Sanemasa, R. Nasu, J. Nagai, M. Takano, Pharmacokinetic interaction of cytochrome P450 3A-related compounds with rhodamine 123, a P-glycoprotein substrate, in rats pretreated with dexamethasone, Drug Metab. Dispos. 29 (2001) 145-151. PMID: 11159804 |
[63] | Elodie Jouan 1, Marc Le Vée 1, Abdullah Mayati 1, Claire Denizot 2, Yannick Parmentier 2 and Olivier Fardel, Evaluation of P-Glycoprotein Inhibitory Potential Using a Rhodamine 123 Accumulation Assay, Pharmaceutics 2016, 8, 12; |
[64] | A. B. Ward, P. Szewczyk, V. Grimard, Structure of P-glycoprotein reveal its conformational flexibility and an epitope on the nucleotide-binding domain, Proc. Natl. Acad. Sci. U. S. A. 110 (2013) 13386-13391. |
[65] | P. H. Palestro, L. Gavernet, G. L. Estiu, L. E. B. Bruno, Docking Applied to the Prediction of the Affinity of Compounds to P-Glycoprotein, Biomed. Res. Int. 358425 (2014) 1-10. |
[66] | T. W. Loo, D. M. Clarke, Identification of residues within the drug-binding domain of the human multidrug resistance P-glycoprotein by cysteine-scanning mutagenesis and reaction with dibromobimane, J. Biol. Chem. 275 (2000) 39272-39278. |
[67] | Mora Lagares L, Minovski N, Caballero Alfonso AY, et al. Homology Modeling of the Human P-glycoprotein (ABCB1) and Insights into Ligand Binding through Molecular Docking Studies. Int J Mol Sci. 2020; 21(11): 4058. Published 2020 Jun 5. |
[68] | T. W. Loo, M. C. Bartlett, D. M. Clarke, Identification of residues in the drug translocation pathway of the human multidrug resistance P-glycoprotein by arginine mutagenesis, J. Biol. Chem. 284 (2009) 24074-24087. |
[69] | E. Dolghih, C. Bryant, A. R. Renslo, M. P. Jacobson, Predicting binding to P-Glycoprotein by flexible receptor docking, Plos Comput. Biol. 7 (2011) e1002083. |
[70] | S. Kanaoka, Y. Kimura, M. Fujikawa, Y. Nakagawa, K. Ueda, M. Akamats, Substrate recognition by P-glycoprotein efflux transporters: Structure-ATPase activity relationship of diverse chemicals and agrochemicals, J. Pestic. Sci. 38(2013) 112-122. |
[71] | W. Liu, Q. Meng, Y. Sun, C. Wang, X. Huo, Z. Liu, P. Sun, H. Sun, X. Ma, K. Liu, Targeting P-Glycoprotein: Nelfinavir Reverses Adriamycin Resistance in K562/ADR Cells, Cell Physiol. Biochem. 51 (2018) 1616-1631. |
[72] | L. Pan, S. G. Aller, Allosteric role of substrate occupancy toward the alignment of P-glycoprotein nucleotide binding domains, Sci. Rep. 8 (2018) 14643. |
[73] | S. G. Aller, J. Yu, A. Ward, Y. Weng, S. Chittaboina, R. Zhuo, P. M. Harrell, Y. T. Trinh, Q. Zhang, I. L. Urbatsch, G. Chang, Structure of P-glycoprotein reveals a molecular basis for poly specific drug binding, Science 323 (2009) 1718-1722. |
[74] | Y. Raviv, H. B. Pollard, E. P. Bruggemann, I. Pastan, M. M. Gottesman, Photosensitized labeling of a functional multidrug transporter in living drug-resistant tumor cells, J. Biol. Chem. 265 (1990) 3975-80. |
APA Style
Kumbhar, N., Khan, N., Bavi, R., Barage, S., Khan, A. (2024). Reversal of P-glycoprotein Mediated Multidrug Resistance in MCF-7/R Cancer Cells by Esculetin Derivatives: Experimental and MD Simulation Studies. American Journal of Biomedical and Life Sciences, 12(3), 30-48. https://doi.org/10.11648/j.ajbls.20241203.12
ACS Style
Kumbhar, N.; Khan, N.; Bavi, R.; Barage, S.; Khan, A. Reversal of P-glycoprotein Mediated Multidrug Resistance in MCF-7/R Cancer Cells by Esculetin Derivatives: Experimental and MD Simulation Studies. Am. J. Biomed. Life Sci. 2024, 12(3), 30-48. doi: 10.11648/j.ajbls.20241203.12
AMA Style
Kumbhar N, Khan N, Bavi R, Barage S, Khan A. Reversal of P-glycoprotein Mediated Multidrug Resistance in MCF-7/R Cancer Cells by Esculetin Derivatives: Experimental and MD Simulation Studies. Am J Biomed Life Sci. 2024;12(3):30-48. doi: 10.11648/j.ajbls.20241203.12
@article{10.11648/j.ajbls.20241203.12, author = {Navanath Kumbhar and Neelofar Khan and Rohit Bavi and Sagar Barage and Ayesha Khan}, title = {Reversal of P-glycoprotein Mediated Multidrug Resistance in MCF-7/R Cancer Cells by Esculetin Derivatives: Experimental and MD Simulation Studies }, journal = {American Journal of Biomedical and Life Sciences}, volume = {12}, number = {3}, pages = {30-48}, doi = {10.11648/j.ajbls.20241203.12}, url = {https://doi.org/10.11648/j.ajbls.20241203.12}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajbls.20241203.12}, abstract = {Coumarins of natural origin have been explored as potential inhibitors of P-glycoprotein (P-gp). Esculetin which belongs to the class of coumarin has been derivatized with known hydrazine pharmacophores viz; benzoyl hydrazine (BH), isonicotinyl hydrazine (INH), and hydrazino benzoic acid. The homology modeling approach was used to predict the three-dimensional structure of human P-gp. An in-silico study has been performed for the structural insight into the molecular mechanism of P-gp inhibition of the esculetin derivatives by molecular docking (MD) and simulation studies. The cell cytotoxic activities of the synthesized compounds were evaluated using in-vitro studies. The sublines resistant doxorubicin (MCF-7/R) were generated and the activities of P-gp proteins were estimated using fluorescent dye accumulation assays. The E-BH showed promising P-gp inhibitory activity and cell cytotoxicity against MCF7 and MCF7/R (resistant) breast cancer cell lines. In line with experimental observations, the E-BH (Esculetin benzoyl hydrazine) has yielded the lowest energy stable complex with P-gp and is stabilized by intermolecular hydrogen bonding and more hydrophobic interactions during 100 ns of simulation. This suggested that the activity of P-gp is probably controlled by hydrophobic interactions. Performed experimental and computational studies has helped to elucidate the mechanism of P-gp inhibition by E-BH. Thus, amongst the three derivatives; E-BH exhibits greater efficacy in blocking the efflux mechanism. }, year = {2024} }
TY - JOUR T1 - Reversal of P-glycoprotein Mediated Multidrug Resistance in MCF-7/R Cancer Cells by Esculetin Derivatives: Experimental and MD Simulation Studies AU - Navanath Kumbhar AU - Neelofar Khan AU - Rohit Bavi AU - Sagar Barage AU - Ayesha Khan Y1 - 2024/08/27 PY - 2024 N1 - https://doi.org/10.11648/j.ajbls.20241203.12 DO - 10.11648/j.ajbls.20241203.12 T2 - American Journal of Biomedical and Life Sciences JF - American Journal of Biomedical and Life Sciences JO - American Journal of Biomedical and Life Sciences SP - 30 EP - 48 PB - Science Publishing Group SN - 2330-880X UR - https://doi.org/10.11648/j.ajbls.20241203.12 AB - Coumarins of natural origin have been explored as potential inhibitors of P-glycoprotein (P-gp). Esculetin which belongs to the class of coumarin has been derivatized with known hydrazine pharmacophores viz; benzoyl hydrazine (BH), isonicotinyl hydrazine (INH), and hydrazino benzoic acid. The homology modeling approach was used to predict the three-dimensional structure of human P-gp. An in-silico study has been performed for the structural insight into the molecular mechanism of P-gp inhibition of the esculetin derivatives by molecular docking (MD) and simulation studies. The cell cytotoxic activities of the synthesized compounds were evaluated using in-vitro studies. The sublines resistant doxorubicin (MCF-7/R) were generated and the activities of P-gp proteins were estimated using fluorescent dye accumulation assays. The E-BH showed promising P-gp inhibitory activity and cell cytotoxicity against MCF7 and MCF7/R (resistant) breast cancer cell lines. In line with experimental observations, the E-BH (Esculetin benzoyl hydrazine) has yielded the lowest energy stable complex with P-gp and is stabilized by intermolecular hydrogen bonding and more hydrophobic interactions during 100 ns of simulation. This suggested that the activity of P-gp is probably controlled by hydrophobic interactions. Performed experimental and computational studies has helped to elucidate the mechanism of P-gp inhibition by E-BH. Thus, amongst the three derivatives; E-BH exhibits greater efficacy in blocking the efflux mechanism. VL - 12 IS - 3 ER -