The integration of organic species with polyoxometalates leads to the formation of hybrid materials that benefit from the combined functionalities of both components. These organo-inorganic systems are of great interest due to their potential synergistic behavior. Developing straightforward and efficient synthetic approaches to design such materials combining the rigidity of the inorganic backbone and the tunability of organic units remains a key objective in the field of materials chemistry. In this work, we present a simple "one-pot" synthesis route for the compound (C6H20N3)2[P2Mo5O23].1.5H2O. Structural characterization was performed using single-crystal X-ray diffraction alongside infrared and UV-Visible spectroscopy. The compound crystallizes in the monoclinic system, space group P21/c, with the following unit cell parameters: a = 18.9626(2) Å, b = 10.8514(1) Å, c = 16.4933(1) Å, β = 107.37(1)°, and Z = 4. Its structure is based on a diphosphomolybdate anion [P2Mo5O23]6-, neutralized by two organic cations (C6H20N3)3+, and accompanied by 1.5 lattice water molecules. The three-dimensional arrangement is characterized by layered assemblies oriented along the a-axis, stabilized through extensive hydrogen bonding. These layers alternate between polyanionic clusters, organic moieties, and water molecules, forming a robust supramolecular network. Notably, this material displays photochromic behavior, suggesting its potential for applications in responsive optical systems.
Published in | Science Journal of Chemistry (Volume 13, Issue 3) |
DOI | 10.11648/j.sjc.20251303.14 |
Page(s) | 76-83 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2025. Published by Science Publishing Group |
Diphosphomolybdate, Polyoxometalate, Strandberg-type, Hybrid, Hydrogen Bonds, Organic Counterions, Photochromic, Single X-ray Diffraction
Column 1 | Column 2 |
---|---|
Molecular formula | |
Formula weight (g.mol-1) | 1205.15 |
Crystal color, Shape | Colorless, Block |
Crystal system | Monoclinic |
a(Å) | 18.9626 (2) |
b(Å) | 10.8514 (1) |
c(Å) | 16.4933 (1) |
α(deg) | 90 |
β(deg) | 107.37 (1) |
γ(deg) | 90 |
V(Å3) | 3239.07 (18) |
Space group | P21/c |
Radiation type | Cu Kα |
Crystal size (mm) | 0.03× 0.05 × 0.07 |
Tmin, Tmax | 0.40/0.59 |
Z | 4 |
F(000) | 2372 |
θ range, deg | 5–80 |
Absorption coefficient, mm-1 | 17.333 |
T(K) | 100 |
λ(Å) | 1.54180 |
h | -23 →24 |
k | -13 →13 |
l | -19 →21 |
Reflections collected | 66180 |
Independent reflections | 7035 [Rint = 0.0317] |
Final R indices, I > 2σ(I) | R1 = 0.017, wR2 = 0.044 |
GOF on F2 | 1.049 |
Peak, hole/eÅ-3 | Δρmin= −0.55, Δρmax = 0.50 |
UV | Ultraviolet |
POMs | Polyoxometalates |
IR | Infrared |
XRD | X-ray Diffraction |
Ow | Oxygen of Water Molecule |
[1] | S. Pathan, A. Patel, Catal. Sci. Technol, 2014, 4, 648. |
[2] | C. Li, N. Mizuno, K. Yamaguchi, K. Suzuki, J. Am. Chem. Soc, 2019, 141, 7687. |
[3] | S. Xun, T. Guo, M. He, R Ma, M. Zhang, W. Zhu, H Li. J. Colloid Interface Sci, 2019, 534, 239. |
[4] | J. Joseph, R. C. Radhakrishnan, J. K. Johnson, S. P. Joy, J. Thomas. Mater. Chem. Phys, 2020, 242, 122488. |
[5] | B. M. Abu-Zied, A. A. A. Farrag, A. M. Asiri. Powder Technol, 2013, 246, 643. |
[6] | L. Lu, Y. Xie. J. Mater. Sci, 2018, 54, 4842. |
[7] | A. Manivel, S Anandan. J. Solid State Electrochem, 2011, 15, 153. |
[8] | J. Liu, J. Wang, M. Chen, D. Qian. J. Nanopart. Res, 2017, 19, 264. |
[9] | D. Y. Du, J. S. Qin, S. L. Li, Z. M. Su, Y. Q. Lan. Chem Soc Rev, 2014, 43: 4615-4632. |
[10] | J. L. Huang, L. Q. Lin, D. H. Sun, H. M. Chen, D. P. Yang, Q. B. Li. Chem Soc Rev, 2015, 44: 6330-6374. |
[11] | A. Banerjee, B. S. Bassil, G. V. Roschenthaler, U. Kortz. Chem Soc Rev, 2012, 41: 7590-7604. |
[12] | J. Niu, J. Ma, J. Zhao, P. Ma, J. Wang. Inorg. Chem. Commun, 2011, 14, 474. |
[13] | X. Ma, F. Zhou, H. Yue, J. Hua, P. Ma. J. Mol. Struct, 2019, 1198, 126865. |
[14] | Z. L. Li, L. C. Wang, J. P. Wang, W. S. You, Z. M. Zhu. Dalton Trans, 2014, 43, 5840. |
[15] | N. Fang, Y. M. Ji, C. Y. Li, Y. Y. Wu, C. G. Ma, H. L. Liu, M. X. Li. Rsc Adv, 2017, 7: 25325-25333. |
[16] | C. H. Gong, X. H. Zeng, C. F. Zhu, J. H. Shu, P. X. Xiao, H. Xu, L. C. Liu, J. Y. Zhang, Q. D. Zeng, J. L. Xie. RSC Adv, 2016, 6: 106248-106259. |
[17] | H. J. Jin, B. B. Z hou, Y. Yu, Z. F. Zhao, Z. H. Su. CrystEngComm, 2011, 13: 585-590. |
[18] | J. X. Meng, Y. Lu, Y. G. Li, H. Fu, E. B. Wang. CrystEngComm, 2011, 13: 2479-2486. |
[19] | X. X. Xu, X. Gao, T. T. Lu, X. X. Liu, X. L. Wang J Mater Chem A, 2015, 3: 198–206. |
[20] | S. L. Feng, Y. Lu, Y. X. Zhang, F. Su, X. J. Sang, L. C. Zhang, W. S. You, Z. M. Zhu. Dalton Trans, 2018, 47: 14060-14069. |
[21] | Y. Ma, Q. Xue, S. T. Min, Y. P. Zhang, H. M. Hu, S. L. Gao, G. L. Xue. Dalton Trans, 2013, 42: 3410-3416. |
[22] | F. Y. Li, L. Xu. Dalton Trans, 2011, 40: 4024-4034. |
[23] | J. P. Wang, H. X. Ma, L. C. Zhang, W. S. You, Z. M. Zhu. Dalton Trans, 2014, 43: 17172-17176. |
[24] | Z. L. Li, Y. Wang, L. C. Zhang, J. P. Wang, W. S. You, Z. M. Zhu. Dalton Trans, 2014, 43: 5840-5846. |
[25] | A. Dolbecq, E. Dumas, C. R. Mayer, P. Mialane, Chem. Rev. 2010, 110 (10), 6009–6048. |
[26] | A. Proust, B. Matt, R. Villanneau, G. Guillemot, P. Gouzerh, G. Izzet, Chem. Soc. Rev. 2012, 41 (22), 7605. |
[27] | M.-P. Santoni, G. S. Hanan, B. Hasenknopf, Coord. Chem. Rev. 2014, 281, 64–85. |
[28] | FT-IR Spectroscopy-Attenuated Total Reflectance (ATR), Perkin Elmer Life and Analytical Sciences (2005). |
[29] | Z. Otwinowski, W. Minor, Academic Press, 1997; 276, pp 307–326. |
[30] | Rigaku Oxford Diffraction (2021). CrysAlis PRO. |
[31] | Rigaku, (2021). XtaL AB Synergy-S. |
[32] | P. W. Betteridge, J. R. Carruthers, R. I. Cooper, K. Prout, D. J. Watkin, J. Appl. Crystallogr. 2003, 36 (6), 1487–1487. |
[33] | A. Harchani, A. Haddad, Z. Anorg. Allg. Chem. 2017, 643, 1744–1751. |
[34] | M. Ayed, I. Nagazi, B. Ayed, A. Haddad, J. Clust. Sci. 2012, 23, 1133– 1142. |
[35] | M. M. Ftini, J. Struct. Chem. 2015, 56 (8), 1595–1601. |
[36] | Y. Ma, Y. Lu, E. Wang, X. Xu, Y. Guo, X. Bai, L. Xu, J. of Mol. Struct. 2006, 784, 18–23. |
[37] | Y. Wang, L. C. Zhang, Z. M. Zhu, N. Li, A. F. Deng, S. Y. Zheng, Transition Met. Chem. 2011, 36, 261–267. |
[38] | M. C. Burla, R. Caliandro, M. Camalli, B. Carrozzini, G. L. Cascarano, L. De Caro, C. Giacovazzo, G. Polidori, R. Spagna, J. Appl. Crystallogr. 2005, 38, 381. |
[39] | G. M. Sheldrick, SHELXL-2013, University of Göttingen, Germany, 2013. |
[40] | A. L. Spek, PLATON, Utrecht University, The Netherlands, 2001. |
[41] | C. Wang, J. Shi, K, Yu, B. Zhou, J. Coord. Chem. 2018, 71, 3970-3979. |
[42] | L. Yaffa, A. B. Kama, M. L. Sall, C. A. K. Diop, M. Sidibe, J. poly. 2020, 191, 114795. |
[43] | S. V. Ganesan, S. Natarajan, J. Chem. Sci. 2005, 117, 219–226. |
[44] | M. Asnani, D. Kumar, T. Duraisamy, A. Ramanan J. Chem. Sci. 2012, 134, 1275–1286. |
[45] | H. Liu, H. Wang, D. Niu, Z. Lu, Synth. Reac. Inorg. Met. Org. Nano-Met. Chem. 2007, 37, 103. |
[46] | V. Coué, R. Dessapt, M. Bujoli-Doeuff, M. Evain, S. Jobic, Inorg. Chem. 2007, 46 (7), 2824–2835. |
[47] | R. Dessapt, M. Collet, V. Coué, M. Bujoli-Doeuff, S. Jobic, C. Lee, M. H. Whangbo, Inorg. Chem. 2009, 48 (2), 574–580. |
[48] | R. Dessapt, M. Gabard, M. Bujoli-Doeuff, P. Deniard, S. Jobic, Inorg. Chem. 2011, 50 (18), 8790–8796. |
APA Style
Soumano, A., Seye, D., Yaffa, L., Toure, A., Duhayon, C., et al. (2025). Synthesis, Structural Characterization, and Photochromic Behavior of a New Hybrid Diphosphomolybdate Compound. Science Journal of Chemistry, 13(3), 76-83. https://doi.org/10.11648/j.sjc.20251303.14
ACS Style
Soumano, A.; Seye, D.; Yaffa, L.; Toure, A.; Duhayon, C., et al. Synthesis, Structural Characterization, and Photochromic Behavior of a New Hybrid Diphosphomolybdate Compound. Sci. J. Chem. 2025, 13(3), 76-83. doi: 10.11648/j.sjc.20251303.14
@article{10.11648/j.sjc.20251303.14, author = {Aboubacar Soumano and Dame Seye and Lamine Yaffa and Assane Toure and Carine Duhayon and Cheikh Abdoul Khadir Diop and Mamadou Sidibe}, title = {Synthesis, Structural Characterization, and Photochromic Behavior of a New Hybrid Diphosphomolybdate Compound }, journal = {Science Journal of Chemistry}, volume = {13}, number = {3}, pages = {76-83}, doi = {10.11648/j.sjc.20251303.14}, url = {https://doi.org/10.11648/j.sjc.20251303.14}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.sjc.20251303.14}, abstract = {The integration of organic species with polyoxometalates leads to the formation of hybrid materials that benefit from the combined functionalities of both components. These organo-inorganic systems are of great interest due to their potential synergistic behavior. Developing straightforward and efficient synthetic approaches to design such materials combining the rigidity of the inorganic backbone and the tunability of organic units remains a key objective in the field of materials chemistry. In this work, we present a simple "one-pot" synthesis route for the compound (C6H20N3)2[P2Mo5O23].1.5H2O. Structural characterization was performed using single-crystal X-ray diffraction alongside infrared and UV-Visible spectroscopy. The compound crystallizes in the monoclinic system, space group P21/c, with the following unit cell parameters: a = 18.9626(2) Å, b = 10.8514(1) Å, c = 16.4933(1) Å, β = 107.37(1)°, and Z = 4. Its structure is based on a diphosphomolybdate anion [P2Mo5O23]6-, neutralized by two organic cations (C6H20N3)3+, and accompanied by 1.5 lattice water molecules. The three-dimensional arrangement is characterized by layered assemblies oriented along the a-axis, stabilized through extensive hydrogen bonding. These layers alternate between polyanionic clusters, organic moieties, and water molecules, forming a robust supramolecular network. Notably, this material displays photochromic behavior, suggesting its potential for applications in responsive optical systems. }, year = {2025} }
TY - JOUR T1 - Synthesis, Structural Characterization, and Photochromic Behavior of a New Hybrid Diphosphomolybdate Compound AU - Aboubacar Soumano AU - Dame Seye AU - Lamine Yaffa AU - Assane Toure AU - Carine Duhayon AU - Cheikh Abdoul Khadir Diop AU - Mamadou Sidibe Y1 - 2025/06/23 PY - 2025 N1 - https://doi.org/10.11648/j.sjc.20251303.14 DO - 10.11648/j.sjc.20251303.14 T2 - Science Journal of Chemistry JF - Science Journal of Chemistry JO - Science Journal of Chemistry SP - 76 EP - 83 PB - Science Publishing Group SN - 2330-099X UR - https://doi.org/10.11648/j.sjc.20251303.14 AB - The integration of organic species with polyoxometalates leads to the formation of hybrid materials that benefit from the combined functionalities of both components. These organo-inorganic systems are of great interest due to their potential synergistic behavior. Developing straightforward and efficient synthetic approaches to design such materials combining the rigidity of the inorganic backbone and the tunability of organic units remains a key objective in the field of materials chemistry. In this work, we present a simple "one-pot" synthesis route for the compound (C6H20N3)2[P2Mo5O23].1.5H2O. Structural characterization was performed using single-crystal X-ray diffraction alongside infrared and UV-Visible spectroscopy. The compound crystallizes in the monoclinic system, space group P21/c, with the following unit cell parameters: a = 18.9626(2) Å, b = 10.8514(1) Å, c = 16.4933(1) Å, β = 107.37(1)°, and Z = 4. Its structure is based on a diphosphomolybdate anion [P2Mo5O23]6-, neutralized by two organic cations (C6H20N3)3+, and accompanied by 1.5 lattice water molecules. The three-dimensional arrangement is characterized by layered assemblies oriented along the a-axis, stabilized through extensive hydrogen bonding. These layers alternate between polyanionic clusters, organic moieties, and water molecules, forming a robust supramolecular network. Notably, this material displays photochromic behavior, suggesting its potential for applications in responsive optical systems. VL - 13 IS - 3 ER -