| Peer-Reviewed

On the Strong Convergence Theorem of Noor Iterative Scheme in the Class of Zamfirescu Operators

Received: 16 July 2013     Published: 30 August 2013
Views:       Downloads:
Abstract

In this paper, we establish the strong convergence theorem of Noor iterative scheme for the class of Zamfirescu operators in arbitrary Banach spaces. Our results is extension and ralization of the recent results of B. L. Xu, M. A. Noor, Y. J. Cho, H. Zhou, G. Guo, S. Plubtieng, R. Wangkeeree, V. Berinde, P. Kumam, W. Kumethong, N. Jewwaiworn and many other authors in literature.

Published in Pure and Applied Mathematics Journal (Volume 2, Issue 4)
DOI 10.11648/j.pamj.20130204.11
Page(s) 140-145
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2013. Published by Science Publishing Group

Keywords

Fixed Point, Mann Iterative Scheme, Ishikawa Iterative Scheme, Noor Iterative Scheme, Zamfirescu Operators, T - Stable

References
[1] B. L. Xu and M. A. Noor, Fixed-point iteration for asymptotically nonexpansive mapping in Banach spaces, J. Math. Anal. Appl., 267, 444-453 (2002).
[2] Y. J. Cho, H. Zhou, and G. Guo, Week and strong convergence theorems for three-step iterations with errors for asymptotically nonexpansive mappings, Comput. Math. Appl. 47, 707-717 (2004).
[3] S. Plubtieng and R. Wangkeeree, Strong convergence theorem for multi-step Noor iterations with errors in Banach spaces, (available online 16 September 2005).
[4] V. Berinde, Iterative Approximation of Fixed Points, Editura Efemeride, Baia Mare, (2002).
[5] V. Berinde, The Picard iteration converges faster than Mann iteration for a class of quasi-contractive operators, Fixed point Theory and Applications, 1, 1-9, (2004).
[6] P. Kumam, W. Kumethong and N. Jewwaiworn, Weak Convergence Theorems of Three-Step Noor Iterative Scheme for I-quasi-nonexpansive Mappings in Banach Spaces, Applied Mathematical Sciences, 2 59, 2915 – 2920 (2008).
[7] I. A. Rus, Principles and Applications of the Fixed Point Theory, (Romanian) Editura Dacia, Cluj-Napoca (1979).
[8] I. A. Rus, Generalized Contractions and Applications, Cluj University Press, Cluj-Napoca (2001).
[9] W. A. Kirk, and B. Sims, Handbook of Metric Fixed Point Theory, Kluwer Academic Publishers (2001).
[10] M. A. Krasnoselskij, Two remarks on the method of successive approximations, (Russian), Uspehi Mat. Nauk. 10, no. 1 (63), 123–127 (1955).
[11] F. E Browder, and W. V. Petryshyn, Construction of fixed points of nonlinear mappings in Hilbert spaces, J. Math. Anal. Appl. 20, 197–228 (1967).
[12] R. Kannan, Some results on fixed points, III Fund. Math. 70, 169–177 (1971).
[13] R. Kannan, Construction of fixed points of a class of nonlinear mappings, J. Math. Anal. Appl. 41, 430–438 (1973).
[14] W. R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc. 4, 506-510 (1953).
[15] C. W. Groetsch, A note on segmenting Mann iterates, J. Math. Anal. Appl. 40, 369–372 (1972).
[16] B. E. Rhoades, Fixed point iterations using infinite matrices, Trans. Amer. Math. Soc., 196, 161–176 (1974).
[17] S. Ishikawa, Fixed points by a new iteration method, Proc. Amer. Math. Soc. 44, 147-150 (1974).
[18] M. A. Noor, New approximation schemes for general variational inequalities, J. Math. Anal. Appl., 251, 217-229 (2000).
[19] M. A. Noor, Three-step iterative algorithms for multivalued variational inclusions, J. Math. Anal. Appl., 255, 589-604 (2001).
[20] B. E. Rhoades, Fixed point iterations for certain nonlinear mappings, J. Math. Anal. Appl. 183, 118-120 (1994).
[21] J.U. Jeong, M. A. Noor and A. Rafiq, Noor iterations for nonlinear Lipschitizian strongly accretive mapping, J. Korea Soc. Math. Educ. Ser. B Pure Appl. Math. 11339-350 (2004).
[22] J.U. Jeong, Jeong, Weak and strong convergence of the Noor iteration process for two asymptotically nonexpansive mappings, J. Appl. Math. & Computing 23 1-2, 525-536 (2007).
[23] M. A. Noor, T. M. Rassias and Z. Huang, Three-step iteration for nonlinear accretive operator equations, J. Math. Anal. Appl., 274, 59-68 (2002).
[24] Q. Liu, Iterations sequence for asymptotically quasi-nonexpansive mapping with an error member, J. Math. Anal. Appl. 259, 18-24 (2001).
[25] T. H. Kim, J.W. Choi, Asymptotic behavior of almost-orbits of non-Lipschitizian mapping in Banach spaces, Math. Japon. 38 191-197 (1993).
[26] R. Glowinski and Le Tallec, Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics, SIAM, Philadelphia, (1989).
[27] S. Haubruge, V.H. Nguyen, and J.J. Strodiot, Convergence analysis and applications of Glowinski-Le Tallec splitting method for finding a zero of the sum of two maximal monotone operators, J. Optim Theory Appl. 97 645-673 (1998).
[28] V. Berinde, A convergence of the Mann iteration in the class Zamfirescu operators, Analele Universit˘at¸ii de Vest, Timi¸soara, Seria Matematic˘a–Informatic˘a, XLV, 1, 33–41 (2007).
[29] V. Berinde, On the convergence of the Ishikawa iteration in the class of quasi contractive operators, Acta Math. Univ. comenianae, LXXIII, 1, 19-126 (2004).
[30] T. Zamfirescu, Fix point theorems in metric spaces, Arch. Math. (Basel), 23, 292-298 (1972).
[31] S. Banach, Sur les operations dans les ensembles assembles abstraits et leur Applications aux equations integrals,Fund. Math. 3, 133-181 (1922).
[32] D. R. Smart, Fixed point theorems (Book), Cambridge University Press, (1974).
Cite This Article
  • APA Style

    Mohammad Asaduzzaman, Mohammad Zulfikar Ali. (2013). On the Strong Convergence Theorem of Noor Iterative Scheme in the Class of Zamfirescu Operators. Pure and Applied Mathematics Journal, 2(4), 140-145. https://doi.org/10.11648/j.pamj.20130204.11

    Copy | Download

    ACS Style

    Mohammad Asaduzzaman; Mohammad Zulfikar Ali. On the Strong Convergence Theorem of Noor Iterative Scheme in the Class of Zamfirescu Operators. Pure Appl. Math. J. 2013, 2(4), 140-145. doi: 10.11648/j.pamj.20130204.11

    Copy | Download

    AMA Style

    Mohammad Asaduzzaman, Mohammad Zulfikar Ali. On the Strong Convergence Theorem of Noor Iterative Scheme in the Class of Zamfirescu Operators. Pure Appl Math J. 2013;2(4):140-145. doi: 10.11648/j.pamj.20130204.11

    Copy | Download

  • @article{10.11648/j.pamj.20130204.11,
      author = {Mohammad Asaduzzaman and Mohammad Zulfikar Ali},
      title = {On the Strong Convergence Theorem of Noor Iterative Scheme in the Class of Zamfirescu Operators},
      journal = {Pure and Applied Mathematics Journal},
      volume = {2},
      number = {4},
      pages = {140-145},
      doi = {10.11648/j.pamj.20130204.11},
      url = {https://doi.org/10.11648/j.pamj.20130204.11},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.pamj.20130204.11},
      abstract = {In this paper, we establish the strong convergence theorem of Noor iterative scheme for the class of Zamfirescu operators in arbitrary Banach spaces. Our results is extension and ralization of the recent results of  B. L. Xu,  M. A. Noor, Y. J. Cho, H. Zhou, G. Guo, S. Plubtieng, R. Wangkeeree, V. Berinde, P. Kumam, W. Kumethong,  N. Jewwaiworn and many other authors in literature.},
     year = {2013}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - On the Strong Convergence Theorem of Noor Iterative Scheme in the Class of Zamfirescu Operators
    AU  - Mohammad Asaduzzaman
    AU  - Mohammad Zulfikar Ali
    Y1  - 2013/08/30
    PY  - 2013
    N1  - https://doi.org/10.11648/j.pamj.20130204.11
    DO  - 10.11648/j.pamj.20130204.11
    T2  - Pure and Applied Mathematics Journal
    JF  - Pure and Applied Mathematics Journal
    JO  - Pure and Applied Mathematics Journal
    SP  - 140
    EP  - 145
    PB  - Science Publishing Group
    SN  - 2326-9812
    UR  - https://doi.org/10.11648/j.pamj.20130204.11
    AB  - In this paper, we establish the strong convergence theorem of Noor iterative scheme for the class of Zamfirescu operators in arbitrary Banach spaces. Our results is extension and ralization of the recent results of  B. L. Xu,  M. A. Noor, Y. J. Cho, H. Zhou, G. Guo, S. Plubtieng, R. Wangkeeree, V. Berinde, P. Kumam, W. Kumethong,  N. Jewwaiworn and many other authors in literature.
    VL  - 2
    IS  - 4
    ER  - 

    Copy | Download

Author Information
  • Department of Mathematics, Islamic University, Kushtia-7003, Bangladesh

  • Department of Mathematics, University of Rajshahi, Rajshahi-6205, Bangladesh

  • Sections