In this paper, the researcher presents some common fixed point theorems for self-mappings satisfying generalized R′-contraction in b-metric spaces and obtained a unique common fixed point of a self-mapping satisfying certain contraction in the framework of b- metric spaces. The results presented over her generalize and extend some existing results in the literature. Finally, he illustrate example to support the results.
Published in | Mathematics Letters (Volume 8, Issue 2) |
DOI | 10.11648/j.ml.20220802.11 |
Page(s) | 22-31 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2022. Published by Science Publishing Group |
Common Fixed Point, b-metric Space, R′-contraction, R′-function, Weakly Compatible Mapping, Simulation Function
[1] | F. Khohajasteh, S. Shuklaand S. Radnovic, (2015). A new approach to the study of fixed Point theorems via simulation functions, Filomat, 96, 1189-1194. |
[2] | A, F, Roldan Lopez de Hierro and Shahzad, (2015), New Fixed point theorems under R′-contractions, Fixed point theory and Applications, 98, 2015. |
[3] | I. A. Bakhatin, (1989), the contractive mapping principle in almost metric space, Func. Anal., 30, 26-37. 1, 1. 1. |
[4] | S. Czerwik, (1993), Contraction mapping in b-metric space, ActaMathematicaet Informatica University Ostraviensis, 1, 5-11. |
[5] | S. Phiangsungnoen and P. Kumamam, (2018), On stability of fixed point inclusion for multivalued type contraction mappings in dislocate b-metric space with application, Math ApplSci, 114, https://doi.org/10.1002/mma.4871. |
[6] | W, Kumam, P, Sukprasert, P. Kumam, A, Shoaib, A. Shahzad and Q. Mahmood, (2018), Some fuzzy fixed point results for fuzzy mappings in complete b-metric spaces, Cogent Mathematic sand Statistic, https://doi.org/10.1080/25742558.2018.1458933. |
[7] | T. Abdeljawad, E. Karapinar, K. Tas, Existence and uniqueness of a common fixed point on Partial metric spaces, Appl., math. Lett., 24 (2011), 1900-1904. 1. |
[8] | S. Phiangsunangnsungnoen and P. Kumamam, (2015), Fuzzy fixed point theorem for Mult-ivalued fuzzy contraction in b-metric spaces, J. Nonlinear Sci. Appl., 8, 5563. |
[9] | C. Mongkolcha, Y. J. Cho and P. Kumam, (2017), Fixed point theorems for simulation function in b-metric space via the wt-distance, Applied Genereal Topology, 18, 91-105. |
[10] | H. Piri and P. Kumam, (2016). Fixed point theoremsfor generalized F-Suzuki-Contraction in Complete b-metric spaces, Fixed Point Theory and Applications, 90, doi: 10.1186/s13663-016-0577-5. |
[11] | H. Aydi, A. Felhi, S. Sahmim, J. NonlinearSci Appl., 10 (2017), 1524-1537.1. |
[12] | A. Amin-Harandi, (2012). Metric space, partial metric space and fixed point theory Appl., 2012. 10. |
[13] | M. Pacurar, (2010). A sequence of almost contraction and fixed point in b-metric space, AnaleleUniversitati de Verst, T, Misora Seria Mathematica Information XLVIII, 3, 125-137. |
[14] | M. Boriceanu, (2009). Strict fixed point theorems for multivalued operations in b-metric Spaces, Int. J. Moda. math. 4, 285-301. |
[15] | A. Wiriyapongsanon and N. Phudolsitthiphat, (2018). Fixed point theorem for Generalized R-contraction in b-metric space, Chiang Mai University, Thai Journal of Math., 277-287. |
[16] | Jungck. G. and B. E. Rhoades, (2006). Fixed point theorems for occasionally weakly compatible mappings, fixed point theory 7 (2), 287-296. |
[17] | Jungck. G. (1985). Compatible mapping and common fixed points, Internet. J Math. Sci., 9, 771- 779. |
[18] | M. Aamri and D. EL Moutawakil, (2002). Some new common fixed point theorems under strict contractive conditions, J. Math. Anal., 270, 181-188. |
[19] | Boriceanu, M. and Bota, M. and Petrusel, A. (2010). Multivalued fractals in b-metric spaces, Cent. Eur. J. Math, 8 (2), 367-377. |
APA Style
Soressa Wakesa Bekana. (2022). Common Fixed Point Theorems for Generalized R′-contraction in b-metric Spaces. Mathematics Letters, 8(2), 22-31. https://doi.org/10.11648/j.ml.20220802.11
ACS Style
Soressa Wakesa Bekana. Common Fixed Point Theorems for Generalized R′-contraction in b-metric Spaces. Math. Lett. 2022, 8(2), 22-31. doi: 10.11648/j.ml.20220802.11
@article{10.11648/j.ml.20220802.11, author = {Soressa Wakesa Bekana}, title = {Common Fixed Point Theorems for Generalized R′-contraction in b-metric Spaces}, journal = {Mathematics Letters}, volume = {8}, number = {2}, pages = {22-31}, doi = {10.11648/j.ml.20220802.11}, url = {https://doi.org/10.11648/j.ml.20220802.11}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ml.20220802.11}, abstract = {In this paper, the researcher presents some common fixed point theorems for self-mappings satisfying generalized R′-contraction in b-metric spaces and obtained a unique common fixed point of a self-mapping satisfying certain contraction in the framework of b- metric spaces. The results presented over her generalize and extend some existing results in the literature. Finally, he illustrate example to support the results.}, year = {2022} }
TY - JOUR T1 - Common Fixed Point Theorems for Generalized R′-contraction in b-metric Spaces AU - Soressa Wakesa Bekana Y1 - 2022/04/22 PY - 2022 N1 - https://doi.org/10.11648/j.ml.20220802.11 DO - 10.11648/j.ml.20220802.11 T2 - Mathematics Letters JF - Mathematics Letters JO - Mathematics Letters SP - 22 EP - 31 PB - Science Publishing Group SN - 2575-5056 UR - https://doi.org/10.11648/j.ml.20220802.11 AB - In this paper, the researcher presents some common fixed point theorems for self-mappings satisfying generalized R′-contraction in b-metric spaces and obtained a unique common fixed point of a self-mapping satisfying certain contraction in the framework of b- metric spaces. The results presented over her generalize and extend some existing results in the literature. Finally, he illustrate example to support the results. VL - 8 IS - 2 ER -