In this paper we prove that every D-effect algebra (E, ∆, 0, 1) can be made into a D-total algebra (E, ⍍, ¬, 1) in such a way that two elements are compatible in (E, ∆, 0, 1) if and only if they commute in(E, ⍍, ¬, 1) where x ∆ y =(x' + y')'.
Published in | Mathematics Letters (Volume 3, Issue 6) |
DOI | 10.11648/j.ml.20170306.13 |
Page(s) | 71-76 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2017. Published by Science Publishing Group |
D-Basic Algebra, Weak D-Basic Algebra, Antitone Involution, D-Effect Algebra, D-Total Algebra
[1] | Allam, A. A. E. M., Mikhaeel, N. N., & Merdach, H. H. (2016). Commutative groupoid algebra. Journal of Mathematical and Computational Science, 6(2), 262. |
[2] | Chajda, I., and Länger, H.: "States on basic algebras." Mathematica Bohemica 142.2 (2017): 197-210. |
[3] | Chajda, I., Halas, R., Kuhr, J.: Every effect algebra can be made into a total algebra. Algebra universalis. 61(2): 139-150 (2009). |
[4] | Chajda, I., Lattices and semilattices having an antitone involution in every upper interval. Comment. Math. Univ. Carolin. 44(4): 577-585 (2003). |
[5] | Chajda, I., Halaš, R., Kuhr, J.: Many-valued quantum algebras. Algebra Universalis 60, 63–90 (2009). |
[6] | Chajda, I., Halaš, R., Kuhr, J.: Semilattice Structures. Heldermann, Lemgo (2007). |
[7] | Dvurečenskij, A., and Hyčko, M.: "Hyper effect algebras." Fuzzy Sets and Systems (2017). |
[8] | Foulis, D. J., Bennett, M. K.: Effect algebras and unsharp quantum logic. Found. Phys. 24, 1325–1346 (1994). |
[9] | Jezek, J., Quackenbush, R.: Directoids: algebraic models of up-directed sets. Algebra Universalis 27, 49–69 (1990). |
[10] | Kopka, F., Chovanec, F.: D-posets. Math. Slovaca 44, 21–34 (1994). |
[11] | Kühr, J., Chajda, I., and Halaš, R.: "The join of the variety of MV-algebras and the variety of orthomodular lattices." International Journal of Theoretical Physics 54. 12: 2244 -2244(2015). |
[12] | Searle, SR., Khuri, AI.: Matrix algebra useful for statistics. John Wiley & Sons; (2017). |
[13] | Stefan, F., Ronco, M., and Showers, P.: "Polytopes and algebras of grafted trees: Stellohedra." arXiv preprint arXiv: 1608.08546 (2016). |
APA Style
Ahmed Allam, Nabila Mikhaeel, Huda Merdach. (2017). D-Effect Algebra can Be Made into a D-Total Algebra. Mathematics Letters, 3(6), 71-76. https://doi.org/10.11648/j.ml.20170306.13
ACS Style
Ahmed Allam; Nabila Mikhaeel; Huda Merdach. D-Effect Algebra can Be Made into a D-Total Algebra. Math. Lett. 2017, 3(6), 71-76. doi: 10.11648/j.ml.20170306.13
AMA Style
Ahmed Allam, Nabila Mikhaeel, Huda Merdach. D-Effect Algebra can Be Made into a D-Total Algebra. Math Lett. 2017;3(6):71-76. doi: 10.11648/j.ml.20170306.13
@article{10.11648/j.ml.20170306.13, author = {Ahmed Allam and Nabila Mikhaeel and Huda Merdach}, title = {D-Effect Algebra can Be Made into a D-Total Algebra}, journal = {Mathematics Letters}, volume = {3}, number = {6}, pages = {71-76}, doi = {10.11648/j.ml.20170306.13}, url = {https://doi.org/10.11648/j.ml.20170306.13}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ml.20170306.13}, abstract = {In this paper we prove that every D-effect algebra (E, ∆, 0, 1) can be made into a D-total algebra (E, ⍍, ¬, 1) in such a way that two elements are compatible in (E, ∆, 0, 1) if and only if they commute in(E, ⍍, ¬, 1) where x ∆ y =(x' + y')'.}, year = {2017} }
TY - JOUR T1 - D-Effect Algebra can Be Made into a D-Total Algebra AU - Ahmed Allam AU - Nabila Mikhaeel AU - Huda Merdach Y1 - 2017/11/28 PY - 2017 N1 - https://doi.org/10.11648/j.ml.20170306.13 DO - 10.11648/j.ml.20170306.13 T2 - Mathematics Letters JF - Mathematics Letters JO - Mathematics Letters SP - 71 EP - 76 PB - Science Publishing Group SN - 2575-5056 UR - https://doi.org/10.11648/j.ml.20170306.13 AB - In this paper we prove that every D-effect algebra (E, ∆, 0, 1) can be made into a D-total algebra (E, ⍍, ¬, 1) in such a way that two elements are compatible in (E, ∆, 0, 1) if and only if they commute in(E, ⍍, ¬, 1) where x ∆ y =(x' + y')'. VL - 3 IS - 6 ER -