| Peer-Reviewed

Polariton Spectrum Subject to Bose-Einstein Condensate of Excitons

Received: 21 June 2015     Accepted: 1 July 2015     Published: 2 July 2015
Views:       Downloads:
Abstract

The diagonalization of the two-body Hamiltonian has been performed by the Green function method and the polariton spectrum has been found. The result is analogous to that found by the Bogolyubov-Tyablikov method of diagonalization. Besides, the spectrum of Bose-Einstein condensate (BEC) of the excitons has been calculated. It is shown how the spectrum of polaritons is re-normalized when the BEC excitons are present.

Published in Journal of Photonic Materials and Technology (Volume 1, Issue 1)
DOI 10.11648/j.jmpt.20150101.12
Page(s) 10-14
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2015. Published by Science Publishing Group

Keywords

Polariton, Exciton, Bose-Einstein Condensate, Green Function, Spectrum

References
[1] S.A. Moskalenko. Fiz. Tverd. Tela, vol. 4, p. 276, 1962.
[2] S.A. Moskalenko. Bose-Einstein condensation of excitons and biexcitons. – Chisinau. Shtiintsa. 1970. 166 pp.
[3] J.M. Blatt, K.W. B ̈oer, and W. Brandt. Phys. Rev., vol. 126, p. 1691, 1962.
[4] Casella, R.C. Source. Journal of the Physics and Chemistry of Solids, vol. 24, p 19-26, 1963.
[5] L.V. Keldysh and A.N. Kozlov. Zh. Exsp. Teor. Fiz. Pis’ma, vol. 5, p. 238, 1967.
[6] L.V. Keldysh and A.N. Kozlov. Zh. Exsp. Teor. Fiz. 54, 978 (1968) [Sov. Phys. JETP 27, 521 (1968).]
[7] Chen Liang, Kong Wei, B.J. Ye, H.M. Wen, X.Y. Zhou, and R.D. Han. Fizika Nizkikh Temperatur, , vol. 37, pp. 708–714, 2011.
[8] I.H. Hakobyan, E.F. Gross, B.S. Razbirin. JETP Letters, vol. 12, p.366, 1970
[9] M.S. Brodin, D.V. Goer, M.G. Macko. JETP Letters, vol.20, p. 300, 1974.
[10] M. E. Flatte, E. Runge, H. Ehrenreich. Appl. Phys. Lett., vol. 66, pp.1313-1315, 1995.
[11] A. A. High, J. R. Leonard, M. Remeika, L. V. Butov, M. Hanson, and A. C. Gossard. Nano Lett., vol. 12 (5), pp 2605–2609, 2012.
[12] V.M. Agranovich. The theory of excitons.М., Nauka, 1968. 328 p.
[13] A.A. Abrikosov L.P. Gorkov, I.E. Dzyaloshinskii. Methods of quantum field theory in statistical physics. Moskwa, GIFML 1962, 443 p.
[14] S.T. Belyaev. JETP, vol.34, pp. 417-432, 1958.
Cite This Article
  • APA Style

    Yu. D. Zavorotnev, O. Yu. Popova. (2015). Polariton Spectrum Subject to Bose-Einstein Condensate of Excitons. Journal of Photonic Materials and Technology, 1(1), 10-14. https://doi.org/10.11648/j.jmpt.20150101.12

    Copy | Download

    ACS Style

    Yu. D. Zavorotnev; O. Yu. Popova. Polariton Spectrum Subject to Bose-Einstein Condensate of Excitons. J. Photonic Mater. Technol. 2015, 1(1), 10-14. doi: 10.11648/j.jmpt.20150101.12

    Copy | Download

    AMA Style

    Yu. D. Zavorotnev, O. Yu. Popova. Polariton Spectrum Subject to Bose-Einstein Condensate of Excitons. J Photonic Mater Technol. 2015;1(1):10-14. doi: 10.11648/j.jmpt.20150101.12

    Copy | Download

  • @article{10.11648/j.jmpt.20150101.12,
      author = {Yu. D. Zavorotnev and O. Yu. Popova},
      title = {Polariton Spectrum Subject to Bose-Einstein Condensate of Excitons},
      journal = {Journal of Photonic Materials and Technology},
      volume = {1},
      number = {1},
      pages = {10-14},
      doi = {10.11648/j.jmpt.20150101.12},
      url = {https://doi.org/10.11648/j.jmpt.20150101.12},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.jmpt.20150101.12},
      abstract = {The diagonalization of the two-body Hamiltonian has been performed by the Green function method and the polariton spectrum has been found. The result is analogous to that found by the Bogolyubov-Tyablikov method of diagonalization. Besides, the spectrum of Bose-Einstein condensate (BEC) of the excitons has been calculated. It is shown how the spectrum of polaritons is re-normalized when the BEC excitons are present.},
     year = {2015}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Polariton Spectrum Subject to Bose-Einstein Condensate of Excitons
    AU  - Yu. D. Zavorotnev
    AU  - O. Yu. Popova
    Y1  - 2015/07/02
    PY  - 2015
    N1  - https://doi.org/10.11648/j.jmpt.20150101.12
    DO  - 10.11648/j.jmpt.20150101.12
    T2  - Journal of Photonic Materials and Technology
    JF  - Journal of Photonic Materials and Technology
    JO  - Journal of Photonic Materials and Technology
    SP  - 10
    EP  - 14
    PB  - Science Publishing Group
    SN  - 2469-8431
    UR  - https://doi.org/10.11648/j.jmpt.20150101.12
    AB  - The diagonalization of the two-body Hamiltonian has been performed by the Green function method and the polariton spectrum has been found. The result is analogous to that found by the Bogolyubov-Tyablikov method of diagonalization. Besides, the spectrum of Bose-Einstein condensate (BEC) of the excitons has been calculated. It is shown how the spectrum of polaritons is re-normalized when the BEC excitons are present.
    VL  - 1
    IS  - 1
    ER  - 

    Copy | Download

Author Information
  • Donetsk Institute for Physics and Engineering named after A. A. Galkin, R. Luxemburg Str., Donetsk, Ukraine

  • Donetsk State Technical University, Shybankova Square, Krasnoarmiysk, Ukraine

  • Sections