| Peer-Reviewed

Marine Macroalgae as Bioindicators and the Application in Moroccan Coastlines: A Review

Received: 22 May 2022     Accepted: 14 June 2022     Published: 27 June 2022
Views:       Downloads:
Abstract

Marine organisms represent nearly half of the worldwide biodiversity; thus, marine macroalgae are known to be good biomonitors of pollution and their ability to accumulate a wide range of pollutants to levels higher than those found in the surrounding waters. These macroalgae species have a unique ability to be used to evaluate metals pollution in marine environments as they have long been known to concentrate metals to levels many times greater to those found in the surrounding waters and they have been used as the metal biomonitors agent around the world. It is known the ways the different industrial effluents might affect the aquatic ecosystem, especially some sensitive macroalgae groups combined with big other stressors like climate change and the anthropogenic activities on coastal areas that is creating an increasing anthropogenic stress worldwide that affect coastal habitats, but very little was then known about the mechanisms of uptake and excretion of metals by species used as biomonitors. However, the biomonitoring using these marine organisms is less developed in Morocco; hence, the objective of this review is to give an insight and an update to the information about recent works on macroalgae biomonitoring in Morocco in the purpose of valorization of the Moroccan macroalgae species in the biomonitoring programs in the Atlantic Ocean and Mediterranean Sea.

Published in International Journal of Natural Resource Ecology and Management (Volume 7, Issue 2)
DOI 10.11648/j.ijnrem.20220702.15
Page(s) 99-108
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2022. Published by Science Publishing Group

Keywords

Biomonitoring, Seaweed, Morocco, Valorization, Marine Biodiversity

References
[1] Aburto-Oropeza, O., Sala, E., Paredes, G., Mendoza, A., & Ballesteros, E. (2007). Predictability of reef fish recruitment in a highly variable nursery habitat. Ecology, 88 (9), 2220–2228. https://doi.org/10.1890/06-0857.1
[2] Adams, S. M. (2005). Assessing cause and effect of multiple stressors on marine systems. Marine Pollution Bulletin, 51 (8–12), 649–657. https://doi.org/10.1016/j.marpolbul.2004.11.040
[3] Ahlf, W., Hollert, H., Neumann-Hensep, H., & Ricking, M. (2002). A Guidance for the Assessment and Evaluation of Sediment Quality. A German Approach Based on Ecotoxicological and Chemical Measurements. Chemical Measurements. J. Soils Sediments, 2, 37–42.
[4] Akcali, I., & Kucuksezgin, F. (2011). A biomonitoring study: Heavy metals in macroalgae from eastern Aegean coastal areas. Marine Pollution Bulletin, 62 (3), 637–645. https://doi.org/10.1016/j.marpolbul.2010.12.021
[5] Bahammou, N., Cherifi, O., Bouamama, H., Rezzoum, N., Sabri, H., & Boundir, Y. (2021). Checklist of rhodophyceae and the first report of Aglaothamnion tripinnatum and Gaillona gallica in the Moroccan coastline. Egyptian Journal of Aquatic Research. https://doi.org/10.1016/j.ejar.2021.04.007
[6] Ballesteros, E., Torras, X., Pinedo, S., García, M., Mangialajo, L., & de Torres, M. (2007). A new methodology based on littoral community cartography dominated by macroalgae for the implementation of the European Water Framework Directive. Marine Pollution Bulletin, 55 (1–6), 172–180. https://doi.org/10.1016/j.marpolbul.2006.08.038
[7] Bayne, B. L. (1989). The biological effects of marine pollutants. In J. Albaigés (Ed.), Marine Pollution (Pp. 131–51). New York: Hemisphere.
[8] Benedetti-Cecchi, L., Pannacciulli, F., Bulleri, F., Moschella, P. S., Airoldi, L., Relini, G., & Cinelli, F. (2001). Predicting the consequences of anthropogenic disturbance: Large-scale effects of loss of canopy algae on rocky shores. Marine Ecology Progress Series, 214, 137–150. https://doi.org/10.3354/MEPS214137
[9] Black, W. A. P., & Mitchell, R. L. (1952). Trace elements in the common brown algae and in sea water. J. Mar. Biol. Assoc. U.K., 30, 575–585.
[10] Blackwell, K. J., Singleton, I., & Tobin, J. M. (1995). Metal cation uptake by yeast: a review. Applied Microbiology and Biotechnology 1995 43: 4, 43 (4), 579–584. https://doi.org/10.1007/BF00164757
[11] Bolam, S. G., Rees, H. L., Somerfield, P., Smith, R., Clarke, K. R., Warwick, R. M., Atkins, M., & Garnacho, E. (2006). Ecological consequences of dredged material disposal in the marine environment: A holistic assessment of activities around the England and Wales coastline. Marine Pollution Bulletin, 52 (4), 415–426. https://doi.org/10.1016/j.marpolbul.2005.09.028
[12] Boundir, Y., Haroun, R., Sanchez De Pedro, R., Hasni, M., Ouazzani, N., Mandi, L., Rafiq, F., Weinberger, F., & Cherifi, O. (2021). Biomonitoring of heavy metal pollution using the brown seaweed Ericaria Selaginoides along the Atlantic coast of Morocco. Applied Ecology and Environmental Research, 20 (1), 21–41. https://doi.org/10.15666/AEER/2001_021041
[13] Boundir, Y., Hasni, M., Rafik, F., Sabri, H., Bahammou, N., Cheggour, M., Achtak, H., & Cherifi, O. (2019). First study of the ecological status in the atlantic coast of morocco using the brown seaweed cystoseira tamariscifolia. Applied Ecology and Environmental Research, 17 (6), 14315–14331. https://doi.org/10.15666/aeer/1706_1431514331
[14] Bradl, H. B. (2005). Heavy metals in the environment. Interaction and remediation. Volume 6. Elsevier.
[15] Brown, C. J., Saunders, M. I., Possingham, H. P., & Richardson, A. J. (2013). Managing for Interactions between Local and Global Stressors of Ecosystems. PLoS ONE, 8 (6), e65765. https://doi.org/10.1371/journal.pone.0065765
[16] Bryan, G. W., & Langston, W. J. (1992). Bioavailability, accumulation and effects of heavy metals in sediments with special reference to United Kingdom estuaries: a review. Environmental Pollution, 76 (2), 89–131. https://doi.org/10.1016/0269-7491(92)90099-V
[17] Bulent, S., Alp, M. T., Sonmez, F., Kocer, M. A. T., & Canpolat, O. (2013). Relationship of Algae to Water Pollution and Waste Water Treatment.
[18] Cardinale, B. J., Duffy, J. E., Gonzalez, A., Hooper, D. U., Perrings, C., Venail, P., Narwani, A., MacE, G. M., Tilman, D., Wardle, D. A., Kinzig, A. P., Daily, G. C., Loreau, M., Grace, J. B., Larigauderie, A., Srivastava, D. S., & Naeem, S. (2012). Biodiversity loss and its impact on humanity. In Nature (Vol. 486, Issue 7401, pp. 59–67). Nature Publishing Group. https://doi.org/10.1038/nature11148
[19] Chapin, F. S., Zavaleta, E. S., Eviner, V. T., Naylor, R. L., Vitousek, P. M., Reynolds, H. L., Hooper, D. U., Lavorel, S., Sala, O. E., Hobbie, S. E., Mack, M. C., & Díaz, S. (2000). Consequences of changing biodiversity. In Nature (Vol. 405, Issue 6783, pp. 234–242). Nature. https://doi.org/10.1038/35012241
[20] Chaudhuri, A., Mitra, M., Havrilla, C., Waguespack, Y., & Schwarz, J. (2007). Heavy metal biomonitoring by seaweeds on the Delmarva Peninsula, east coast of the USA. Botanica Marina, 50 (3), 151–158. https://doi.org/10.1515/BOT.2007.018
[21] Cheminée, A., Enric, S., Jérémy, P., Pascaline, B., Jean-Michel, C., Luisa, M., Olivier, B., Hazel, A., & Patrice, F. (2010). Algal forests and the replenishment of Mediterranean rocky fishes - Consequences of the decline of Cystoseira forests on Mediterranean juvenile fish populations. ICES CM 2010/Q:17.
[22] Chouikh, N. eddine, Gillet, P., Langston, W. J., Cheggour, M., Maarouf, A., El Hachimi, Y., & Mouabad, A. (2021). Spatial and temporal assessment of metals contamination in the surface sediments of biogenic intertidal reefs of Sabellaria alveolata (Annelida: Polychaeta) from Essaouira protected coastal area (Atlantic coast of Morocco). Regional Studies in Marine Science, 48. https://doi.org/10.1016/J.RSMA.2021.101998
[23] Chryssovergis, F., Panayotidis, P. (1995). Evolution des peuplements macro-phytobenthiques le long d’un gradient d’eutrophisation (Golfe de Maliakos, Mer Egee e, Grece). Oceanol. Acta, 18, 649–658.
[24] Claisse, D., & Alzieu, C. (1993). Copper contamination as a result of antifouling paint regulations? Marine Pollution Bulletin, 26 (7), 395–397. https://doi.org/10.1016/0025-326X(93)90188-P
[25] Claudet, J., & Fraschetti, S. (2010). Human-driven impacts on marine habitats: A regional meta-analysis in the Mediterranean Sea. Biological Conservation, 143 (9), 2195–2206. https://doi.org/10.1016/j.biocon.2010.06.004
[26] Davison, I. R., & Pearson, G. A. (1996). Stress tolerance in intertidal seaweeds. J. Phycol., 32, 197–222.
[27] Duedall, I. W., & Maul, G. A. (2005). Demography of coastal populations. The Encyclopedia of Coastal Science, Ed. M. L. Schwartz, Springer: Dordrecht, The Netherlands, 368—374.
[28] Eklund, B., Elfström, M., Gallego, I., Bengtsson, B.-E., & Breitholtz, M. (2010). Biological and chemical characterization of harbour sediments from the Stockholm area. Soil Sed. Poll., 10, 127–41.
[29] Essedaoui, A., & Sif, J. (2001). Bioaccumulation des métaux lourds et induction des métallo-protéines au niveau de la glande digestive de Mytilus galloprovincialis. Revue Marocaine Des Sciences Agronomiques et Vétérinaires, 21, 17–25.
[30] Ferssiwi, A., Sif, J., El Hamri, H., Rouhi, A., & Amiard, J. C. (2004). Contamination par le cadmium de l’Annélide Polychète Hediste diversicolor dans la région d’El Jadida (Maroc) implication des protéines type métallothionéines. Journal de Recherche Océanographique, 29, 59–64.
[31] Folke, C., Carpenter, S., Walker, B., Scheffer, M., Elmqvist, T., Gunderson, L., & Holling, C. S. (2004). Regime Shifts, Resilience, and Biodiversity in Ecosystem Management. Annual Review of Ecology, Evolution, and Systematics, 35, 557–581.
[32] Foster, P. (1976). Concentrations and concentration factors of heavy metals in brown algae. Environmental Pollution (1970), 10 (1), 45–53. https://doi.org/10.1016/0013-9327(76)90094-X
[33] Furness, R. W., & Rainbow, P. S. (1990a). Heavy Metals in the Marine Environment (1st Editio). CRC Press - Science.
[34] Furness, R. W., & Rainbow, P. S. (1990b). Heavy Metals in the Marine Environment. CRC Press - Science.
[35] Gattuso, J. P., Frankignoulle, M., & Wollast, R. (1998). Carbon and carbonate metabolism in coastal aquatic ecosystems. Annual Review of Ecology and Systematics, 29, 405–434. https://doi.org/10.1146/annurev.ecolsys.29.1.405
[36] Gola, D., Kumar Tyagi, P., Arya, A., Chauhan, N., Agarwal, M., Singh, S. K., & Gola, S. (2021). The impact of microplastics on marine environment: A review. Environmental Nanotechnology, Monitoring & Management, 16, 100552. https://doi.org/10.1016/J.ENMM.2021.100552
[37] Goumri, M., Cheggour, M., Maarouf, A., & Mouabad, A. (2018). Preliminary data on the composition and spatial distribution patterns of echinoderms along Safi rocky shores (NW Morocco). AACL Bioflux, 11 (4), 1193–1202.
[38] Häder, D. P., Banaszak, A. T., Villafañe, V. E., Narvarte, M. A., González, R. A., & Helbling, E. W. (2020). Anthropogenic pollution of aquatic ecosystems: Emerging problems with global implications. Science of The Total Environment, 713, 136586. https://doi.org/10.1016/J.SCITOTENV.2020.136586
[39] Haghshenas, V., Kafaei, R., Tahmasebi, R., Dobaradaran, S., Hashemi, S., Sahebi, S., Sorial, G. A., & Ramavandi, B. (2020). Potential of green/brown algae for monitoring of metal (loid)s pollution in the coastal seawater and sediments of the Persian Gulf: ecological and health risk assessment. Environmental Science and Pollution Research, 27 (7), 7463–7475. https://doi.org/10.1007/s11356-019-07481-0
[40] Halpern, B. S., Walbridge, S., Selkoe, K. A., Kappel, C. V., Micheli, F., D’Agrosa, C., Bruno, J. F., Casey, K. S., Ebert, C., Fox, H. E., Fujita, R., Heinemann, D., Lenihan, H. S., Madin, E. M. P., Perry, M. T., Selig, E. R., Spalding, M., Steneck, R., & Watson, R. (2008). A global map of human impact on marine ecosystems. Science, 319 (5865), 948–952. https://doi.org/10.1126/science.1149345
[41] Hays, J. D., Imbrie, J., & Shackleton, N. J. (1976). Variations in the earth’s orbit: Pacemaker of the ice ages. In Science (Vol. 194, Issue 4270, pp. 1121–1132). American Association for the Advancement of Science. https://doi.org/10.1126/science.194.4270.1121
[42] Hurd, C. L., Harrison, P. J., Bischof, K., & Lobban, C. S. (2014). Seaweed ecology and physiology, second edition. In Seaweed Ecology and Physiology, Second Edition. Cambridge University Press. https://doi.org/10.1017/CBO9781139192637
[43] Jones, A. J. (1922). The arsenic content of some of the marine algae. Pharm. J, 109, 86.
[44] Jordanova, A., Strezov, A., Ayranov, M., Petkov, N., & Stoilova, T. (1999). Heavy metal assessment in algae, sediments and water from the Bulgarian Black Sea coast. Water Science and Technology, 39 (8), 207–212. https://doi.org/10.1016/S0273-1223(99)00204-8
[45] Juanes, J. A., Guinda, X., Puente, A., & Revilla, J. A. (2008). Macroalgae, a suitable indicator of the ecological status of coastal rocky communities in the NE Atlantic. Ecological Indicators, 8, 351–359. https://doi.org/10.1016/j.ecolind.2007.04.005
[46] Kaimoussi, A., Chafik, A., Mouzdahir, A., & Bakkas, S. (2001). The impact of industrial pollution on the Jorf Lasfar coastal zone (Morocco, Atlantic Ocean): the mussel as an indicator of metal contamination. Comptes Rendus de l’Académie Des Sciences - Series IIA - Earth and Planetary Science, 333, 337–341.
[47] Keith, D. A., Rodríguez, J. P., Rodríguez-Clark, K. M., Nicholson, E., Aapala, K., Alonso, A., Asmussen, M., Bachman, S., Basset, A., Barrow, E. G., Benson, J. S., Bishop, M. J., Bonifacio, R., Brooks, T. M., Burgman, M. A., Comer, P., Comín, F. A., Essl, F., Faber-Langendoen, D., … Zambrano-Martínez, S. (2013). Scientific Foundations for an IUCN Red List of Ecosystems. PLoS ONE, 8 (5). https://doi.org/10.1371/journal.pone.0062111
[48] Kouali, H., Achtak, H., Chaouti, A., Elkalay, K., & Dahbi, A. (2020). Assessment of trace metal contamination in surficial fine-grained sediments and mussel, Mytilus galloprovincialis from Safi areas in the northwestern Atlantic coast of Morocco. Regional Studies in Marine Science, 40. https://doi.org/10.1016/J.RSMA.2020.101535
[49] Langston, W. (1990). Toxic effects of metals and the incidence of metal pollution in marine ecoystems. In: Heavy Metals in the Marine Environment, 101–122.
[50] Laws, E. A. (2018). Aquatic Pollution: An Introductory Text (Fourth Edi). John Wiley & Sons, Ltd.
[51] López-Pedrouso, M., Varela, Z., Franco, D., Fernández, J. A., & Aboal, J. R. (2020). Can proteomics contribute to biomonitoring of aquatic pollution? A critical review. Environmental Pollution, 267, 115473. https://doi.org/10.1016/J.ENVPOL.2020.115473
[52] Luypaert, T., Hagan, J. G., McCarthy, M. L., & Poti, M. (2020). Status of Marine Biodiversity in the Anthropocene. In YOUMARES 9 - The Oceans: Our Research, Our Future (pp. 57–82). Springer International Publishing. https://doi.org/10.1007/978-3-030-20389-4_4
[53] Makroum, K., & Moncef, M. (2003). Etude de la bioaccumulation du cadmium par certains macrophytes du littoral de la région d’El Jadida (Maroc Atlantique). Cahiers de Biologie Marine, 44 (1), 49–60.
[54] Martinez, M. L., Intralawan, A., Vazquez, G., Perez-Maqueo, O., Sutton, P., & Landgrave, R. (2007). The coasts of our world: Ecological, economic and social importance. Ecological Economics, 63 (2–3), 254–272.
[55] Masindi, V., & Muedi, K. L. (2018). Environmental Contamination by Heavy Metals. Heavy Metals. https://doi.org/10.5772/INTECHOPEN.76082
[56] McKinney, M. L., & Lockwood, J. L. (1999). Biotic homogenization: A few winners replacing many losers in the next mass extinction. In Trends in Ecology and Evolution (Vol. 14, Issue 11, pp. 450–453). Elsevier Ltd. https://doi.org/10.1016/S0169-5347(99)01679-1
[57] Miller, R. J., Bennett, S., Keller, A. A., Pease, S., & Lenihan, H. S. (2012). TiO2 nanoparticles are phototoxic to marine phytoplankton. PLoS ONE, 7 (1). https://doi.org/10.1371/journal.pone.0030321
[58] Miller, R. J., Lenihan, H. S., Muller, E. B., Tseng, N., Hanna, S. K., & Keller, A. A. (2010). Impacts of metal oxide nanoparticles on marine phytoplankton. Environmental Science and Technology, 44 (19), 7329–7334. https://doi.org/10.1021/es100247x
[59] Mineur, F., Arenas, F., Assis, J., Davies, A. J., Engelen, A. H., Fernandes, F., Malta, E. jan, Thibaut, T., Van Nguyen, T., Vaz-Pinto, F., Vranken, S., Serrão, E. A., & De Clerck, O. (2015). European seaweeds under pressure: Consequences for communities and ecosystem functioning. Journal of Sea Research, 98, 91–108. https://doi.org/10.1016/j.seares.2014.11.004
[60] Morris, A. W., & Bale, A. J. (1975). The accumulation of cadmium, copper, manganese and zinc by Fucus vesiculosus in the Bristol Channel. Estuarine and Coastal Marine Science, 3 (2), 153–163. https://doi.org/10.1016/0302-3524(75)90018-3
[61] Munday, D. R., Johnson, H. L., & Marshall, D. P. (2013). Eddy Saturation of Equilibrated Circumpolar Currents. Journal of Physical Oceanography, 43 (3), 507–532. https://doi.org/10.1175/JPO-D-12-095.1
[62] Murphy, V., Hughes, H., & McLoughlin, P. (2007). Cu (II) binding by dried biomass of red, green and brown macroalgae. Water Research, 41 (4), 731–740. https://doi.org/10.1016/j.watres.2006.11.032
[63] Orfanidis, S., Panayotidis, P., & Stamatis, N. (2003). An insight to the ecological evaluation index (EEI). Ecological Indicators, 3, 27–33. https://doi.org/10.1016/S1470-160X(03)00008-6
[64] Panayotidis, P., Montesanto, B., & Orfanidis, S. (2004). Use of low-budget monitoring of macroalgae to implement the European Water Framework Directive. Journal of Applied Phycology, 16 (1), 49–59. https://doi.org/10.1023/B:JAPH.0000019114.47824.42
[65] Parus, A., & Karbowska, B. (2020). Marine Algae as Natural Indicator of Environmental Cleanliness. Water Air Soil Pollut. https://doi.org/10.1007/s11270-020-4434-0
[66] PEW. (2018). Plastic Pollution Affects Sea Life Throughout the Ocean. www.pewtrusts.org/
[67] Rai, L. C., Gaur, J. P., & Kumar, H. D. (1981). Phycology and heavy-metal pollution. Biological Reviews of the Cambridge Philosophical Society, 56 (2), 99–151. https://doi.org/10.1111/j.1469-185X.1981.tb00345.x
[68] Rainbow, P. S. (1995). Biomonitoring of heavy metal availability in the marine environment. Marine Pollution Bulletin, 31 (4–12), 183–192. https://doi.org/10.1016/0025-326X(95)00116-5
[69] Ramachandra, T. V., Sudarshan, P. B., Mahesh, M. K., & Vinay, S. (2018). Spatial patterns of heavy metal accumulation in sediments and macrophytes of Bellandur wetland, Bangalore. Journal of Environmental Management, 206, 1204–1210. https://doi.org/10.1016/J.JENVMAN.2017.10.014
[70] Reis, P., Cassiano, J., Veiga, P., Rubal, M., & Sousa-Pinto, I. (2014). Fucus spiralis as monitoring tool of metal contamination in the northwest coast of Portugal under the European Water Framework Directives. Environ Monit Assess, 186, 5447–5460.
[71] Rogers, S. I., & Greenaway, B. (2005). A UK perspective on the development of marine ecosystem indicators. Marine Pollution Bulletin, 50 (1), 9–19. https://doi.org/10.1016/j.marpolbul.2004.10.028
[72] Sabri, H., Boularhbar, H., Maarouf, A., Sbahi, S., Hasni, M., Boundir, Y., Mandi, L., Kerner, M., Weinberger, F., & Cherifi, O. (2020). First Assessment Of Pollution Impact At Essaouira Coast (Morocco) Using Biotic And Abiotic Parameters And The Red Algae Ellisolandia Elongata As Potential Bioindicator Of Organic Pollution. Applied Ecology and Environmental Research, 18 (6), 7717–7738. https://doi.org/10.15666/aeer/1806_77177738
[73] Schiel, D. R., Wood, S. A., Dunmore, R. A., & Taylor, D. I. (2006). Sediment on rocky intertidal reefs: Effects on early post-settlement stages of habitat-forming seaweeds. Journal of Experimental Marine Biology and Ecology, 331, 158 – 172. https://doi.org/10.1016/j.jembe.2005.10.015
[74] Seeliger, U., & Edwards, P. (1977). Correlation coefficients and concentration factors of copper and lead in seawater and benthic algae. Marine Pollution Bulletin, 8 (1), 16–19. https://doi.org/10.1016/0025-326X(77)90398-8
[75] Squadrone, S., Brizio, P., Battuello, M., Nurra, N., Sartor, R. M., Riva, A., Staiti, M., Benedetto, A., Pessani, D., & Abete, M. C. (2018). Trace metal occurrence in Mediterranean seaweeds. Environmental Science and Pollution Research, 25 (10), 9708–9721. https://doi.org/10.1007/s11356-018-1280-3
[76] Strezov and Novora. (2005). Comparative analysis of heavy metal and and radionuclide contaminants in Black sea green and red macrpalgae. Water Sc. and Technology., 51 (11), 1–8.
[77] Topcuoǧlu, S., Güven, K. C., Balkis, N., & Kirbaşoǧlu, Ç. (2003). Heavy metal monitoring of marine algae from the Turkish Coast of the Black Sea, 1998-2000. Chemosphere, 52 (10), 1683–1688. https://doi.org/10.1016/S0045-6535(03)00301-1
[78] UNEP. (2006). Marine and Coastal Ecosystems and Human Well-being: A Synthesis Report Based on the Findings of the Millenium Ecosystem Assessment. 76.
[79] Valdivia, N., Scrosati, R. A., Molis, M., & Knox, A. S. (2011). Variation in Community Structure across Vertical Intertidal Stress Gradients: How Does It Compare with Horizontal Variation at Different Scales? PLoS ONE, 6 (8), e24062. https://doi.org/10.1371/journal.pone.0024062
[80] Viana, I. G., Aboal, J. R., Fernández, J. A., Real, C., Villares, R., & Carballeira, A. (2010). Use of macroalgae stored in an Environmental Specimen Bank for application of some European Framework Directives. Water Research, 44 (6), 1713–1724. https://doi.org/10.1016/j.watres.2009.11.036
[81] Walker, D., & Kendrick, G. (1998). Threats to macroalgal diversity: marine habitat destruction and fragmentation, pollution and introduced species. Botanica Marina, 41, 105–112.
[82] Wells, E. (2004). Water Framework Directive Marine Plants Task Team Tools Paper Subject: Intertidal Coastal Waters Macroalgae-Rocky Shore Tool.
[83] Wernberg, T., Russell, B. D., Moore, P. J., Ling, S. D., Smale, D. A., Campbell, A., Coleman, M. A., Steinberg, P. D., Kendrick, G. A., & Connell, S. D. (2011). Impacts of climate change in a global hotspot for temperate marine biodiversity and ocean warming. In Journal of Experimental Marine Biology and Ecology (Vol. 400, Issues 1–2, pp. 7–16). https://doi.org/10.1016/j.jembe.2011.02.021
[84] White, H. H. (1984). Concepts in marine pollution measurements. College Park, MD: Maryland Sea Grant College Program, University of Maryland, 743 Pp. https://agris.fao.org/agris-search/search.do?recordID=XF2015033876
[85] Wilcove, D. S., Rothstein, D., Dubow, J., Phillips, A., & Losos, E. (1998). Quantifying Threats to Imperiled Species in the United States. BioScience, 48 (8), 607–615. https://doi.org/10.2307/1313420
[86] WWF. (2021). Marine pollution. www.wwf.org.au
Cite This Article
  • APA Style

    Younes Boundir, Mustapha Hasni, Fatima Rafiq, Mohamed Cheggour, Ricardo Haroun, et al. (2022). Marine Macroalgae as Bioindicators and the Application in Moroccan Coastlines: A Review. International Journal of Natural Resource Ecology and Management, 7(2), 99-108. https://doi.org/10.11648/j.ijnrem.20220702.15

    Copy | Download

    ACS Style

    Younes Boundir; Mustapha Hasni; Fatima Rafiq; Mohamed Cheggour; Ricardo Haroun, et al. Marine Macroalgae as Bioindicators and the Application in Moroccan Coastlines: A Review. Int. J. Nat. Resour. Ecol. Manag. 2022, 7(2), 99-108. doi: 10.11648/j.ijnrem.20220702.15

    Copy | Download

    AMA Style

    Younes Boundir, Mustapha Hasni, Fatima Rafiq, Mohamed Cheggour, Ricardo Haroun, et al. Marine Macroalgae as Bioindicators and the Application in Moroccan Coastlines: A Review. Int J Nat Resour Ecol Manag. 2022;7(2):99-108. doi: 10.11648/j.ijnrem.20220702.15

    Copy | Download

  • @article{10.11648/j.ijnrem.20220702.15,
      author = {Younes Boundir and Mustapha Hasni and Fatima Rafiq and Mohamed Cheggour and Ricardo Haroun and Ouafa Cherifi},
      title = {Marine Macroalgae as Bioindicators and the Application in Moroccan Coastlines: A Review},
      journal = {International Journal of Natural Resource Ecology and Management},
      volume = {7},
      number = {2},
      pages = {99-108},
      doi = {10.11648/j.ijnrem.20220702.15},
      url = {https://doi.org/10.11648/j.ijnrem.20220702.15},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ijnrem.20220702.15},
      abstract = {Marine organisms represent nearly half of the worldwide biodiversity; thus, marine macroalgae are known to be good biomonitors of pollution and their ability to accumulate a wide range of pollutants to levels higher than those found in the surrounding waters. These macroalgae species have a unique ability to be used to evaluate metals pollution in marine environments as they have long been known to concentrate metals to levels many times greater to those found in the surrounding waters and they have been used as the metal biomonitors agent around the world. It is known the ways the different industrial effluents might affect the aquatic ecosystem, especially some sensitive macroalgae groups combined with big other stressors like climate change and the anthropogenic activities on coastal areas that is creating an increasing anthropogenic stress worldwide that affect coastal habitats, but very little was then known about the mechanisms of uptake and excretion of metals by species used as biomonitors. However, the biomonitoring using these marine organisms is less developed in Morocco; hence, the objective of this review is to give an insight and an update to the information about recent works on macroalgae biomonitoring in Morocco in the purpose of valorization of the Moroccan macroalgae species in the biomonitoring programs in the Atlantic Ocean and Mediterranean Sea.},
     year = {2022}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Marine Macroalgae as Bioindicators and the Application in Moroccan Coastlines: A Review
    AU  - Younes Boundir
    AU  - Mustapha Hasni
    AU  - Fatima Rafiq
    AU  - Mohamed Cheggour
    AU  - Ricardo Haroun
    AU  - Ouafa Cherifi
    Y1  - 2022/06/27
    PY  - 2022
    N1  - https://doi.org/10.11648/j.ijnrem.20220702.15
    DO  - 10.11648/j.ijnrem.20220702.15
    T2  - International Journal of Natural Resource Ecology and Management
    JF  - International Journal of Natural Resource Ecology and Management
    JO  - International Journal of Natural Resource Ecology and Management
    SP  - 99
    EP  - 108
    PB  - Science Publishing Group
    SN  - 2575-3061
    UR  - https://doi.org/10.11648/j.ijnrem.20220702.15
    AB  - Marine organisms represent nearly half of the worldwide biodiversity; thus, marine macroalgae are known to be good biomonitors of pollution and their ability to accumulate a wide range of pollutants to levels higher than those found in the surrounding waters. These macroalgae species have a unique ability to be used to evaluate metals pollution in marine environments as they have long been known to concentrate metals to levels many times greater to those found in the surrounding waters and they have been used as the metal biomonitors agent around the world. It is known the ways the different industrial effluents might affect the aquatic ecosystem, especially some sensitive macroalgae groups combined with big other stressors like climate change and the anthropogenic activities on coastal areas that is creating an increasing anthropogenic stress worldwide that affect coastal habitats, but very little was then known about the mechanisms of uptake and excretion of metals by species used as biomonitors. However, the biomonitoring using these marine organisms is less developed in Morocco; hence, the objective of this review is to give an insight and an update to the information about recent works on macroalgae biomonitoring in Morocco in the purpose of valorization of the Moroccan macroalgae species in the biomonitoring programs in the Atlantic Ocean and Mediterranean Sea.
    VL  - 7
    IS  - 2
    ER  - 

    Copy | Download

Author Information
  • Laboratory of Water, Biodiversity and Climate Change, Biology Department, Cadi Ayyad University, Marrakesh, Morocco

  • Laboratory of Water, Biodiversity and Climate Change, Biology Department, Cadi Ayyad University, Marrakesh, Morocco

  • Environment and Health Team, Biology Department, Cadi Ayyad University, Safi, Morocco

  • Ecology Unit, Biology Department, Cadi Ayyad University, Marrakech, Morocco

  • Biodiversity and Conservation Research Group, Las Palmas de Gran Canaria University, Telde, Spain

  • Laboratory of Water, Biodiversity and Climate Change, Biology Department, Cadi Ayyad University, Marrakesh, Morocco

  • Sections