| Peer-Reviewed

Phytodiversity and Spatial Development of Urban Flora in Lokossa, Benin

Received: 12 October 2020     Accepted: 26 October 2020     Published: 11 November 2020
Views:       Downloads:
Abstract

The need for sustainable and green cities highlights the importance to improve plant species diversity in urban areas. We assessed the phytodiversity of three management units (strata) to enhance plant species conservation planning in Lokossa City. A forest inventory was conducted in each stratum based on one-hectare sample plots. Fifty plots were distributed following a stratified random sampling approach. We found that 53 plants species belonging to 46 genera and 22 families were established in the strata. However, the flora of the city was mixed with 50.94% of native plant species. The dominant families were Leguminosae, Arecaceae, Malvaceae, Moraceae, Combretaceae, Lamiaceae and Myrtaceae. The ten most important plant species accounted for 69.31% of the total abundance. Khaya senegalensis (Desv.) A. Juss. and Mangifera indica L. were dominant plant species. Ubiquitous species accounted for 54.72% of species pool and 82.92% of all individuals. The flora of residential zone was more diversified than those in road buffer and institutional zones. Which contributed to 60.27% of all individuals. The road buffer and institutional zones flora were quite similar. Therefore, we suggested that the planting and monitoring projects should be detailed and budgeted with reference to plausible scientific knowledge in the city development plan. The creation of participatory botanical gardens at the city neighborhoods scale. The integration of the flora of residential zone in species conservation projects in order to increase global diversity and storage of biomass in the city.

Published in International Journal of Natural Resource Ecology and Management (Volume 5, Issue 4)
DOI 10.11648/j.ijnrem.20200504.12
Page(s) 145-159
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2020. Published by Science Publishing Group

Keywords

Stratified Random Sampling, Phytodiversity, Species Differentiation, Similarity, Urban Flora, Sustainable Development

References
[1] Zhang, D., Zheng, H., He, X., Ren, Z. B., Zhai, C., Yu, X., Mao, Z. & Wang, P. (2016). Effects of forest type and urbanization on species composition and diversity of urban forest in Changchun, Northeast China. Urban Ecosystems. 19, 455–473. doi: 10.1007/s11252-015-0473-5.
[2] Lv, H., Yang, Y., Zhang, D., Du, H., Zhang, J., Wang, W. & He, X. (2019). Perimeter-area ratio effects of urbanization intensity on forest characteristics, landscape patterns and their associations in Harbin City, Northeast China. Urban Ecosystems. 22, 631–642. doi: 10.1007/s11252-019-00850-0.
[3] Langley, B. (2012). Modelling Urban Forest Structure and Services Using the Urban Forest Effects (UFORE) Model. Bachelor of science in forestry, University of British Columbia, Vancouver, Canada.
[4] Wang, W., Zhang, B., Xiao, L., Zhou, W., Wang, H.-F. & He, X. (2018). Decoupling forest characteristics and background conditions to explain urban-rural variations of multiple microclimate regulation from urban trees. Peer J. 6, e5450. doi: 10.7717/peerj.5450.
[5] McKinney, M. L. (2002). Urbanization, Biodiversity, and Conservation: The impacts of urbanization on native species are poorly studied, but educating a highly urbanized human population about these impacts can greatly improve species conservation in all ecosystems. BioScience. 5 2 (10), 883–890.
[6] Conway, T. M. & Bourne, K. S. (2013). A comparison of neighborhood characteristics related to canopy cover, stem density and species richness in an urban forest. Landsc. Urban Plan 113, 10–18. doi: 10.1016/j.landurbplan.2013.01.005.
[7] Kenney, W. A., van Wassenaer, P. J. & Satel, A. L. (2011). Criteria and indicators for strategic urban forest planning and management. Arboriculture & Urban Forestry. 37 (3), 108–117.
[8] Nock, A. C., Paquette, A., Follett, M., Nowak, D. J. & Messier, C. (2013). Effects of urbanization on tree species functional diversity in Eastern North America. Ecosystems. 16, 1487–1497. doi: 10.1007/s10021-013-9697-5.
[9] Alvey, A. A. (2006). Promoting and preserving biodiversity in the urban forest. Urban Forestry & Urban Greening. 5 (4), 195–201. doi: 10.1016/j.ufug.2006.09.003.
[10] Kendal, D., Dobbs, C. & Lohr, V. I. (2014). Global patterns of diversity in the urban forest: is there evidence to support the 10/20/30 rule? Urban Forestry & Urban Greening. 13 (3), 411–417. doi: 10.1016/j.ufug.2014.04.004.
[11] Zainudin, S. R., Mustafa, K. A., Austin, D., Helmy, J. & Lingkeu, D. A. (2012). Urban trees Diversity in Kuching North City and UNIMAS, Kota Samarahan, Sarawak. Pertanika Journal of Tropical Agricultural Science, 35 (1), 27–32.
[12] Shashua-Bar, L., Pearlmutter, D. & Erell, E. (2011). The influence of trees and grass on outdoor thermal comfort in a hot-arid environment. International Journal of Climatology. 31 (10), 1498–1506. doi: 10.1002/joc.2177.
[13] Teka, O., Togbe, C. E., Djikpo, R., Chabi, R. & Djossa, B. (2017). Effects of Urban Forestry on the Local Climate in Cotonou, Benin Republic. Agriculture, Forestry and Fisheries. Vol. 6, N° 4, 123–129. doi: 10.11648/j.aff.20170604.13.
[14] Ochola, E. M., Ochieng, A. A., Bosco, J. N., Mwibanda, J. W. & Sahar, S. (2018). Attenuation effect of plant canopy sizes on microclimate in urban greenspaces within Nairobi City, Kenya. African Journal of Plant Science. 12 (7), 129–140. doi: 10.5897/AJPS2018.1659.
[15] Folega, F., Atakpama, W., Kanda, M., Konate, D., Gmadjom, K., Wala, K. & Akpagana, K. (2019). Flora of urban green space of Atakpame city in Togo. Synthese: Revue des Science et de la Technologie. 25 (2), 25–39.
[16] Ozkan, Y. U., Ozdemir, I., Saglam, S., Yesil, A. & Demirel, T. (2016). Evaluating the Woody Species Diversity by Means of Remotely Sensed Spectral and Texture Measures in the Urban Forests. Journal of the Indian Society of Remote Sensing. 44, 687–697. doi: 10.1007/s12524-016-0550-0.
[17] United Nation (2016). Urbanization and development: emerging futures. United Nations: New York, USA.
[18] McDonnell, M. J., Pickett, S. T. A. & Pouyat, R. V. (1993). The application of the ecological gradient paradigm to the study of urban effects. In Humans as components of ecosystems: subtle human effects and the ecology of populated areas. McDonnell, M. J., Pickett, S. T. A. (eds). Springer: New York, USA, pp. 175–189. doi: 10.1007/978-1-4612-0905-8_15.
[19] Walker, J. S., Grimm, N. B., Briggs, J. M., Gries, C. & Dugan, L. (2009). Effects of urbanization on plant species diversity in central Arizona. Frontiers in Ecology and the Environment. 7 (9), 465–470. doi: 10.1890/080084.
[20] Williams, N. S. G., Schwartz, M. W., Vesk, P. A., McCarthy, M. A., Hahs, A. K., Clemants, S. E., Corlett, R. T., Duncan, R. P., Norton, B. A., Thompson, K. & McDonnell, M. J. (2009). A conceptual framework for predicting the effects of urban environments on floras. Journal of Ecology. 97 (1), 4–9. doi: 10.1111/j.1365-2745.2008.01460.x.
[21] Nero, B. F., Nana Afranaa, K., Jatta, R. & Fatunbi, O. (2018). Tree Species Diversity and Socioeconomic Perspectives of the Urban (Food) Forest of Accra, Ghana. Sustainability. 10 (3417), 1–19. doi: 10.3390/su10103417.
[22] Kühn, I. & Klotz, S. (2006). Urbanization and homogenization: comparing the floras of urban and rural areas in Germany. Biological Conservation. 127 (3). 292–300. doi: 10.1016/j.biocon.2005.06.033.
[23] Ikin, K., Knight, E., Lindenmayer, D. B., Fischer, J. & Manning, A. D. (2013). The influence of native versus exotic streetscape vegetation on the spatial distribution of birds in the suburbs and reserves. Diversity and Distributions. 19 (3), 294–306; doi: 10.1111/j.1472-4642.2012.00937.x.
[24] Barth, B. J., Fitzgibbon, S. I. & Wilson, R. S. (2015). New urban developments that retain more remnant trees have greater bird diversity. Landscape and Urban Planning. 136, 122–129. doi: 10.1016/j.landurbplan.2014.11.003.
[25] Fuwape, J. A. & Onyekwelu, J. C. (2011). Urban Forest Development in West Africa: Benefits and Challenges. Journal of Biodiversity and Ecological Sciences. 1 (1), 77–94.
[26] Nero, B. F., Campion, B. B., Agbo, N., Callo-Concha, D. & Denich, M. (2017). Tree and trait diversity, species coexistence, and diversity-functional relations of green spaces in Kumasi, Ghana. Procedia Engineering. 198, 99–115. doi: 10.1016/j.proeng.2017.07.164.
[27] Shackleton, C. M. (2012). Is there no urban forestry in the developing world? Scientific Research and Essays. 7 (40), 3329–3335. doi: 10.5897/SRE11.1117.
[28] Sambieni, K. R., Moyene, A. B., Toyi, M. S., Occhiuto, R., Bogaert, J. & Dossou, B. (2018). La végétation arborée domestique dans le paysage urbain et périurbain de la ville de Kinshasa, République Démocratique du Congo. Afrique Science. 14 (2), 197–208.
[29] Amontcha, M. A. A., Lougbegnon, T., Tente, B., Djego, J. & Sinsin, A. B. (2015). Aménagements urbains et dégradation de la phytodiversité dans la Commune d’Abomey-Calavi (Sud-Bénin). Journal of Applied Biosciences. 91, 8519–8528. doi: 10.4314/jab.v91i1.9.
[30] Osseni, A. A., Sinsin, A. B. & Teka, O. (2014). Facteurs de contrôle de la diversité des plantations d’alignements dans la ville de Porto-Novo au Bénin. Afrique Science. 10 (4), 200–208.
[31] Teka, O. S., Togbe, C. E., Djossa, B. A., Djikpo, V. A. R., Oumorou, M. & Sinsin, A. B. (2017). Plant diversity and carbon sequestration in roadside trees in Cotonou (Republic of Benin). Annales des Sciences Agronomiques. 21 (2), 203–221.
[32] Moussa, S., Kuyah, S., Kyereh, B., Tougiani, A. & Mahamane, S. (2020). Diversity and structure of urban forests of Sahel cities in Niger. Urban Ecosystems. 23, 851–864. doi: 10.1007/s11252-020-00984-6.
[33] Arnberger, A., Brigitte, A., Eder, R., Ebenberger, M., Wanka, A., Kolland, F., Wallner, P. & Hutter, H.-P. (2016). Elderly resident’s uses of and preferences for urban green spaces during heat periods. Urban Forestry & Urban Greening. 21, 102–115. doi: 10.1016/j.ufug.2016.11.012.
[34] Kabisch, N., Qureshi, S. & Haase, D. (2015). Human–environment interactions in urban green spaces–a systematic review of contemporary issues and prospects for future research. Environmental Impact Assessment Review. 50, 25–34. doi: 10.1016/j.eiar.2014.08.007.
[35] Zhang, D., Wang, W. J., Zheng, H. F., Ren, Z. B., Zhai, C., Tang, Z., Shen, G. Q. & He, X. Y. (2017). Effects of urbanization intensity on forest structural taxonomic attributes, landscape patterns and their associations in Changchun, Northeast China: implications for urban green infrastructure planning. Ecological Indicators. 80, 286–296. doi: 10.1016/j.ecolind.2017.05.042.
[36] National Institute of Statistic and Economic Analysis (2015). RGPH4: What to retain from the population in 2013? Service of Demographic studies, Cotonou, Benin.
[37] Nowak, D. J., Crane, E. D., Stevens, J. C., Hoehn, R. E., Walton, J. T. & Bond, J. (2008). A Ground-Based Method of Assessing Urban Forest Structure and Ecosystem Services. Arboriculture & Urban Forestry. 34 (6), 347–358.
[38] Jim, C. Y. (2002). Heterogeneity and differentiation of the tree flora in three major land uses in Guangzhou City, China. Annals of Forest Science. 59 (1), 107–118. doi: 10.1016/s0378-1127 (00)00449-7.
[39] Godefroid, S. & Koedam, N. (2007). Urban plant species patterns are highly driven by density and function of built-up areas. Landscape Ecology. 22 (8), 1227–1239. doi: 10.1007/s10980-007-9102-x.
[40] Forthofer, R. N., Lee, E. S. & Hernandez, M. (2007). Biostatistics: a guide to design, analysis and discovery. 2nd ed., Elsevier: USA, pp. 502.
[41] Curtis, J. T. & Macintosh, R. P. (1951). An upland forest continuum in the prairie forest border region of Wisconsin. Ecology. 32 (3), 476–496. doi: 10.2307/1931725.
[42] Assogbadjo, A. E., Glèlè Kakaï, R. L., Sinsin, B. & Pelz, D. (2009). Structure of Anogeissus leiocarpa Guill., Perr. natural stands in relation to anthropogenic pressure within Wari-Maro Forest Reserve in Benin. African Journal of Ecology. 48, 644–653. doi: 10.1111/j.1365-2028.2009.01160.x.
[43] Hammond, E. M. & Pokorný, R. (2020). Diversity of Tree Species in Gap Regeneration under Tropical Moist Semi-Deciduous Forest: An Example from Bia Tano Forest Reserve. Diversity. 12 (301), 1–19. doi: 10.3390/d12080301.
[44] Magurran, A. E. (2004). Measuring ecological diversity. Blackwell publishing: Oxford, UK, pp. 256.
[45] Magurran, A. E. (1988). Ecological diversity and its measurement. 1st ed., Princeton University Press: New Jersey, USA, pp. 179.
[46] Chao, A., Chazdon, R. L., Colwell, R. K. & Shen, T.-J. (2005). A new statistical approach for assessing similarity of species composition with incidence and abundance data. Ecology Lett. 8 (2), 148–159. doi: 10.1111/j.1461-0248.2004.00707.x.
[47] Chao, A., Chazdon, R. L., Colwell, R. K. & Shen, T.-J. (2006). Abundance-based similarity indices and their estimation when there are unseen species in samples. Biometrics. 62 (2), 361–371. doi: 10.1111/j.1541-0420.2005.00489.x
[48] R Core Team (2020). R: A language and environment for statistical computing; R Foundation for Statistical Computing, Vienna, Austria. URL https: //www.R-project.org/.
[49] N’Zala, D. & Miankodila, P. (2002). Arbres et espaces verts à Brazzaville (Congo). Bois et Forest des Tropiques. 272 (2), 88–92.
[50] Radji, R., Kokou, K. & Akpagana, K. (2011). Woody plant species used in urban forestry in West Africa: Case study in Lome, capital town of Togo. Journal of Horticulture and Forestry. 3 (1), 21–31. doi: 10.5897/JHF.9000120.
[51] Charahabil, M. M., Bassene, C., Balde, H., NDiaye, S. & Diatta, M. (2018). Diversité et structure des espaces végétalisés urbains de la ville de Ziguinchor, Sénégal. International Journal of Biological and Chemical Sciences. 12 (4), 1650–1666. doi: 10.4314/ijbcs.v12i4.12.
[52] Nero, B. F., Callo-Concha, D. & Denich, M. (2018). Structure, Diversity, and Carbon Stocks of the Tree Community of Kumasi, Ghana. Forests. 9 (519), 1–17. doi: 10.3390/f9090519.
[53] Agbelade, A. D., Onyekwelu, J. C. & Oyun, M. B. (2017). Tree Species Richness, Diversity, and Vegetation Index for Federal Capital Territory, Abuja, Nigeria. International Journal of Forestry Research. 2017, 1–12. doi: 10.1155/2017/4549756.
[54] Dardour, M., El Arbi, D., Azzouz, B., Nour-Eddine, K. & Abdelbasset, B. (2014). Inventaire et état sanitaire des arbres d'alignement de la ville de Saïdia (Maroc oriental). Nature & Technologie. 10, 2–9.
[55] Kouadio, Y. J. C., Vroh, B. T. A., Gone Bi, Z. B., Adou Yao, C. Y. & N’Guessan, K. E. (2016). Evaluation de la diversité et estimation de la biomasse des arbres d’alignement des communes du Plateau et de Cocody (Abidjan–Côte d’Ivoire). Journal of Applied Biosciences. 97, 9141–9151. doi: 10.4314/jab.v97i1.1.
[56] Uka, U. N. & Belford, E. J. D. (2016). Inventory of Street Tree Population and Diversity in the Kumasi Metropolis, Ghana. Journal of Forest and Environmental Sciences. 32 (4), 367–376. doi: 10.7747/JFES.2016.32.4.367.
[57] Kouassi, K. J., Kouassi, K. H. & Kouassi, R. H. (2018). Evaluation de la diversité floristique et estimation du taux de séquestration de carbone des arbres en alignement de voies de la commune de Daloa (Côte d’Ivoire). International Journal of Biological and Chemical Sciences. 12 (4), 1876–1886. doi: 10.4314/ijbcs.v12i4.28.
[58] Mori, S. A., Boom, B. M., De Carvalino, A. M. & Dos Santos, T. S. (1983). Southern Bahia moist forest. The Botanical Review. 49 (2), 155–232. doi: 10.1007/BF02861011.
[59] Nitoslawski, A. S. & Duinker, N. P. (2016). Managing Tree Diversity: A Comparison of Suburban Development in Two Canadian Cities. Forests, 7 (119), 1–21. doi: 10.3390/f7060119.
[60] Murtala, D. & Manaf, A. L. (2019). Progress and Methodological Approaches in Urban Trees and Forests Research in Africa. Journal of Environment and Earth Sciences. 9 (9), 32–45. doi: 10.7176/JEES/9-9-05.
[61] Simmering, D., Addai, S., Geller, G. & Otte, A. (2013). A university campus in peri-urban Accra (Ghana) as a haven for dry-forest species. Flora Vegetatio Sudano-Sambesica. 16, 10–21. doi.org/10.21248/fvss.16.21.
[62] Nowak, D. J., Hirabayashi, S., Doyle, M., McGovern, M. & Pasher, J. (2018). Air pollution removal by urban forests in Canada and its effect on air quality and Human Health. Urban Forestry & Urban Greening. 29, 40–48. doi: 10.1016/j.ufug.2017.10.019.
[63] De Bruyn, O. (2016). Exotic plant species and environmental vulnerability: an old debate? The case study of Belgium (from the end of the 18th century to the 1950ies). VertigO. 16 (3), 1–22. https: //id.erudit.org/iderudit/1039984ar.
[64] Kimpouni, V., Nzila, J.-D., Watha-Ndoudy, N., Kokolo Bilongo, C. E., Yallo M. S., Kampe, J.-P. & Louembe, D. (2020). Sociocultural and Ecological Dynamics of Green Spaces in Brazzaville (Congo). International Journal of Ecology. 2020, 1–12. doi: 10.1155/2020/3719267.
[65] Nagendra, H. & Gopal, D. (2010). Street trees in Bangalore: density, diversity, composition and distribution. Urban Forestry & Urban Greening. 9 (2), 129–137. doi: 10.1016/j.ufug.2009.12.005.
[66] De Lacy, P. & Shackleton, C. M. (2017). Aesthetic and spiritual ecosystem services provided by urban sacred sites. Sustainability. 9 (1628), 1–14. doi: 10.3390/su9091628.
[67] Doody, B. J., Sullivan, J. J., Meurk, C. D., Stewart, G. H. & Perkins, H. C. (2010). Urban realities: The contribution of residential gardens to the conservation of urban forest remnants. Biodiversity and Conservation. 19 (5), 1385–1400. doi: 10.1007/s10531-009-9768-2.
[68] Wang, H.-F., Qureshi, S., Knapp, S., Friedman, C. R. & Hubacek, K. (2015). A basic assessment of residential plant diversity and its ecosystem services and disservices in Beijing, China. Applied Geography. 64, 121–131. doi: 10.1016/j.apgeog.2015.08.006.
[69] Fraser, E. D. G. & Kenney, W. A. (2000). Cultural background and landscape history as factors affecting perceptions of the urban forest. Journal of Arboriculture. 26 (2), 106–113.
[70] Almas, A. D. & Conway, T. M. (2017). Residential Knowledge of Native Tree Species: A Case Study of Residents in Four Southern Ontario Municipalities. Environmental Management. 59 (1), 21–33. doi: 10.1007/s00267-016-0772-5.
[71] Park, H., Kramer, M., Rhemtulla, J. M. & Konijnendijk, C. C. (2019). Urban food systems that involve trees in northern America and Europe: a scoping review. Urban Forestry & Urban Greening. 45, 126360. doi: 10.1016/j.ufug.2019.06.003.
[72] Galluzzi, G., Eyzaguirre, P. & Negri, V. (2010). Home gardens: neglected hotspots of agro-biodiversity and cultural diversity. Biodiversity and Conservation. 19 (13), 3635–3654. doi: 10.1007/s10531-010-9919-5.
[73] Agbogidi, E. B. & Adolor, O. M. (2014). Home gardens in the maintenance of biological diversity. Journal of Bio Innovation. 3 (1), 04–19.
[74] Nassauer, J. I., Wang, Z. & Dayrell, E. (2009). What will the neighbors think? Cultural norms and ecological design. Landscape and Urban Planning. 92 (3-4), 282–292. doi: 10.1016/j.landurbplan.2009.05.010.
[75] Cilliers, S., Cilliers, J., Lubbe, R. & Siebert, S. (2013). Ecosystem services of urban green spaces in African countries–perspectives and challenges. Urban Ecosystems. 16 (4), 681–702. doi: 10.1007/s11252-012-0254-3.
[76] Bekkouch, I., Kouddane, N., Darouia, E., Boukroute, A. & Berrichi, A. (2011). Inventaire des arbres d’alignement de la ville d’Oujda. Nature & Technologie. 5, 87–91.
[77] Jim, C. Y. & Liu, H. T. (2001). Species diversity of three major urban forest types in Guangzhou City, China. Forest Ecology and Management. 146 (1-3), 99–114. doi: 10.1016/s0378-1127 (00)00449-7.
[78] Akoègninou, A., van der Burg, W. J. & van der Maesen, L. O. (2006). Flore Analytique du Benin. Backhuys Publishers: Wageningen, Pays-Bas, pp. 1035.
Cite This Article
  • APA Style

    Erick Senademi Sogbossi, Soufouyane Zakari, Julien Gaudence Djego. (2020). Phytodiversity and Spatial Development of Urban Flora in Lokossa, Benin. International Journal of Natural Resource Ecology and Management, 5(4), 145-159. https://doi.org/10.11648/j.ijnrem.20200504.12

    Copy | Download

    ACS Style

    Erick Senademi Sogbossi; Soufouyane Zakari; Julien Gaudence Djego. Phytodiversity and Spatial Development of Urban Flora in Lokossa, Benin. Int. J. Nat. Resour. Ecol. Manag. 2020, 5(4), 145-159. doi: 10.11648/j.ijnrem.20200504.12

    Copy | Download

    AMA Style

    Erick Senademi Sogbossi, Soufouyane Zakari, Julien Gaudence Djego. Phytodiversity and Spatial Development of Urban Flora in Lokossa, Benin. Int J Nat Resour Ecol Manag. 2020;5(4):145-159. doi: 10.11648/j.ijnrem.20200504.12

    Copy | Download

  • @article{10.11648/j.ijnrem.20200504.12,
      author = {Erick Senademi Sogbossi and Soufouyane Zakari and Julien Gaudence Djego},
      title = {Phytodiversity and Spatial Development of Urban Flora in Lokossa, Benin},
      journal = {International Journal of Natural Resource Ecology and Management},
      volume = {5},
      number = {4},
      pages = {145-159},
      doi = {10.11648/j.ijnrem.20200504.12},
      url = {https://doi.org/10.11648/j.ijnrem.20200504.12},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ijnrem.20200504.12},
      abstract = {The need for sustainable and green cities highlights the importance to improve plant species diversity in urban areas. We assessed the phytodiversity of three management units (strata) to enhance plant species conservation planning in Lokossa City. A forest inventory was conducted in each stratum based on one-hectare sample plots. Fifty plots were distributed following a stratified random sampling approach. We found that 53 plants species belonging to 46 genera and 22 families were established in the strata. However, the flora of the city was mixed with 50.94% of native plant species. The dominant families were Leguminosae, Arecaceae, Malvaceae, Moraceae, Combretaceae, Lamiaceae and Myrtaceae. The ten most important plant species accounted for 69.31% of the total abundance. Khaya senegalensis (Desv.) A. Juss. and Mangifera indica L. were dominant plant species. Ubiquitous species accounted for 54.72% of species pool and 82.92% of all individuals. The flora of residential zone was more diversified than those in road buffer and institutional zones. Which contributed to 60.27% of all individuals. The road buffer and institutional zones flora were quite similar. Therefore, we suggested that the planting and monitoring projects should be detailed and budgeted with reference to plausible scientific knowledge in the city development plan. The creation of participatory botanical gardens at the city neighborhoods scale. The integration of the flora of residential zone in species conservation projects in order to increase global diversity and storage of biomass in the city.},
     year = {2020}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Phytodiversity and Spatial Development of Urban Flora in Lokossa, Benin
    AU  - Erick Senademi Sogbossi
    AU  - Soufouyane Zakari
    AU  - Julien Gaudence Djego
    Y1  - 2020/11/11
    PY  - 2020
    N1  - https://doi.org/10.11648/j.ijnrem.20200504.12
    DO  - 10.11648/j.ijnrem.20200504.12
    T2  - International Journal of Natural Resource Ecology and Management
    JF  - International Journal of Natural Resource Ecology and Management
    JO  - International Journal of Natural Resource Ecology and Management
    SP  - 145
    EP  - 159
    PB  - Science Publishing Group
    SN  - 2575-3061
    UR  - https://doi.org/10.11648/j.ijnrem.20200504.12
    AB  - The need for sustainable and green cities highlights the importance to improve plant species diversity in urban areas. We assessed the phytodiversity of three management units (strata) to enhance plant species conservation planning in Lokossa City. A forest inventory was conducted in each stratum based on one-hectare sample plots. Fifty plots were distributed following a stratified random sampling approach. We found that 53 plants species belonging to 46 genera and 22 families were established in the strata. However, the flora of the city was mixed with 50.94% of native plant species. The dominant families were Leguminosae, Arecaceae, Malvaceae, Moraceae, Combretaceae, Lamiaceae and Myrtaceae. The ten most important plant species accounted for 69.31% of the total abundance. Khaya senegalensis (Desv.) A. Juss. and Mangifera indica L. were dominant plant species. Ubiquitous species accounted for 54.72% of species pool and 82.92% of all individuals. The flora of residential zone was more diversified than those in road buffer and institutional zones. Which contributed to 60.27% of all individuals. The road buffer and institutional zones flora were quite similar. Therefore, we suggested that the planting and monitoring projects should be detailed and budgeted with reference to plausible scientific knowledge in the city development plan. The creation of participatory botanical gardens at the city neighborhoods scale. The integration of the flora of residential zone in species conservation projects in order to increase global diversity and storage of biomass in the city.
    VL  - 5
    IS  - 4
    ER  - 

    Copy | Download

Author Information
  • Faculty of Agronomic Sciences, University of Abomey-Calavi, Abomey-Calavi, Benin

  • Institute of Geography and Land Planning, University of Abomey-Calavi, Abomey-Calavi, Benin

  • Faculty of Agronomic Sciences, University of Abomey-Calavi, Abomey-Calavi, Benin

  • Sections