| Peer-Reviewed

Spintronics: Overview on Spin Based Electronics and Its Potential Applications

Received: 14 August 2021     Accepted: 3 September 2021     Published: 11 September 2021
Views:       Downloads:
Abstract

Spintronics is a branch of electronics that utilizes the spin of an electron to carry information. Spin is a quantum phenomenon and attracted researchers because it is an ideal way for representing logic “0" and “1" (used in electronics) with spin pointing “up" or “down" with respect to a magnetic field. Therefore, spin imparts itself into a new kind of binary logic of "one" and "zero". These characteristics open a new possibility of spintronics application in various fields such as magnetic storage technology and quantum computers. Spintronics is an emerging field for next-generation nanoelectronic devices to minimize their power consumption (which is the major issue in future microelectronics technology) and increase memory capabilities. This article briefly introduces the fundamentals of spintronics, progress in spintronics and its applications; it also features the current trend and challenging goal in this area.

Published in International Journal of Materials Science and Applications (Volume 10, Issue 5)
DOI 10.11648/j.ijmsa.20211005.11
Page(s) 94-97
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2021. Published by Science Publishing Group

Keywords

Spintronics, Spin Relaxation, Spin Transfer Torque (STT)

References
[1] Waldrop M M; Nature, 2016 530 144-147. DOI: 10.1038/530144a.
[2] Kim N S, Austin T, Blaauw D, Mudge T, Flautner K, Hu J S, Irwin M J, Kandemir M, and Narayanan V; IEEE Computer, 2003 36 68-75. DOI: 10.1109/MC.2003.1250885.
[3] Sarma S S; Hwang E H and Kaminski A; Solid State Commun., 2002, 127, 99-107. DOI: 10.1016/S0038-1098(03)00337-5.
[4] Lu J W, Chen E, Kabir M, Stan M R and Wolf S A; International Mater. Rev., 2016, 61, 456-472. DOI: 10.1080/09506608.2016.1204097.
[5] Salahuddin S; Nature, 2013, 494, 43-44. DOI: 10.1038/nature11944.
[6] Zutic I, Fabin J and Sharma S D; Rev. Mod. Phys. 2004, 76, 323. DOI: 10.1103/RevModPhys.76.323.
[7] Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, Molnar S V, Roukes M L, Chtchelkanova A Y, Treger D M; Science, 2001, 294, 1488-1495. DOI: 10.1126/science.1065389.
[8] Vincenzo D P; Science, 1995, 270, 255-261. DOI: 10.1126/science.270.5234.255.
[9] Coronado E and Epestin E J; J. Mater. Chem., 2009, 19, 1670-1671. DOI: 10.1039/B901955N.
[10] Hirohata A, Yamada K, Nakatani Y, Prejbeanu I-L, Dieny B, Pirro P, Hille- brands B; J. Magnet. and Magnetic Mater., 2020, 509, 166711. DOI: 10.1016/j.jmmm.2020.166711.
[11] Sarma S D, Fabian J, Hu X, Zutic I; Solid State Commun., 2001, 119, 207-215. DOI: 10.1016/S0038-1098(01)00111-9.
[12] Fabian J and Sarma S D; J. Vac. Sci. and Technol. B, 1999, 17, 1708. DOI: 10.1116/1.590813.
[13] Prinz A G; Phys. Today, 1995, 48, 4. DOI: 10.1063/1.881459.
[14] Ghazaly A. El, Gorchon J, Wilson R B, Pattabi A, Bokor J; J. Magn. Magn. Mater., 2020, 502, 166478. DOI: 10.1016/j.jmmm.2020.166478.
[15] Kent A D and Worledge D C; Nat. Nanotechnol., 2015, 10, 187-191. DOI: 10.1038/nnano.2015.24.
[16] Bhatti S, Sbiaa R, Hirohata A, Ohno H, Fukami S and, Piramanayagam S N; Mater. Today, 2017, 20, 530-548. DOI: https://doi.org/10.1016/j.mattod.2017.07.007
[17] Zhu J-G, Park C; Mater. Today, 2006, 9, 36-45. DOI: https://doi.org/10.1016/S1369-7021(06)71693-5
[18] Dankert A, Kamalakar M V, Wajid A, Patel R S and Dash S P; Nano Res., 2015, 8, 1357-1364 DOI: https://doi.org/10.1007/s12274-014-0627-4
[19] Ralph D C, Stiles M D; J. Magn. Magn. Mater., 2008, 320, 1190-1216. DOI: https://doi.org/10.1016/j.jmmm.2007.12.019
[20] Liu L, Lee O J, Gudmundsen T J, Ralph D C, and Buhrman R A; Phys. Rev. Lett., 2012, 109, 096602. DOI: https://doi.org/10.1103/PhysRevLett.109.096602
[21] Dankert A, Geurs J, Kamalakar M V, Charpentier S and Dash S P; Nano Lett., 2015, 15, 7976-7981. DOI: https://doi.org/10.1021/acs.nanolett.5b03080
[22] Irfan B and Chatterjee R; Appl. Phys. Lett., 2015, 107, 173108. DOI: https://doi.org/10.1063/1.4934569
[23] Irfan B; Appl. Phys. A, 2020, 126, 1-7. DOI: https://doi.org/10.1007/s00339-020-3345-7
[24] Irfan B, Joshi B P, Thamizhavel A, Deshmukh M M, Chatterjee R; Solid State Commun., 2015, 220, 45-48. DOI: https://doi.org/10.1016/j.ssc.2015.07.007
[25] Fan Y and Wang K L; World Scientif. Publishing, 2016, 6, 1640001. DOI: https://doi.org/10.1142/S2010324716400014
[26] Chernyshov A, Overby M, Liu X, Furdyna J K, Geller Y L and Rokhinson L P; Nat. Phys., 2009, 5, 656. DOI: https://doi.org/10.1038/nphys1362
[27] Garello K, Miron I M, Avci C O, Freimuth F, Mokrousov Y, Blugel S, Boulle O, Gaudin G, Gambardella P; Nat. Nanotech., 2013, 8, 587. DOI: https://doi.org/10.1038/nnano.2013.145
[28] Mishra R and Yang H; IEEE Trans. on Magn., 2021, 57, 1-34. DOI: https://doi.org/10.1109/TMAG.2020.3032099
[29] Mishra R, Kumar D and Yang H; Phys. Rev. Appl., 2019, 11, 054065. DOI: https://doi.org/10.1103/PhysRevApplied.11.054065
[30] Guo L, Gu X, Zhu X, Sun X; Adv. Mater., 2019, 31, 1805355. DOI: https://doi.org/10.1002/adma.201805355
[31] Yakout S M; J. Supercond. Nov Magn., 2020, 33, 2557-2580. DOI: https://doi.org/10.1007/s10948-020-05545-8
[32] Chappert C, Fert A. and Dau F N V; Nature Mater., 2007, 6, 813-823. DOI: https://doi.org/10.1038/nmat2024
[33] Hirohata A and Takanashi K; J. Phys. D: Appl. Phys., 2014, 47, 193001. DOI: 10.1088/0022-3727/47/19/193001.
[34] Peng S Z, Zhang Y, Wang M X, Zhang Y G and Zhao W; Wiley Encyclopedia of Electrical and Electronics Engineering (John Wiley and Sons, Inc., 2014) 2014, 24, 17616. DOI: https://doi.org/10.1002/047134608X.W8231
[35] Eschrig M; Rep. Prog. Phys., 2015, 78, 104501. DOI: 10.1088/0034-4885/78/10/104501.
[36] Wolf S A and Treger D; IEEE Trans. Magn., 2000, 36, 2748. DOI: https://doi.org/10.1109/20.908580
[37] Prinz G A; Science, 1998, 282, 1660. DOI: 10.1126/science.282.5394.1660.
[38] Joshi V K; Engineering Science and Technology, an International Journal, 2016, 19, 1503-1513. DOI: https://doi.org/10.1016/j.jestch.2016.05.002
[39] Ramaswamy R, Lee J M, Cai K and Yang H; Appl. Phys. Rev., 2018, 5, 031107. DOI: https://doi.org/10.1063/1.5041793
[40] Endoh T and Honjo H; J. Low Power Electron. Appl., 2018, 8, 44. DOI: https://doi.org/10.3390/jlpea8040044
[41] Walowski J and Munzenberg M; J. Appl. Phys., 2016, 120, 140901. DOI: https://doi.org/10.1063/1.4958846
[42] Bocklage L; Phys. Rev. Lett., 2017, 118, 257202. DOI: https://doi.org/10.1103/PhysRevLett.118.257202
[43] Bulgarevich D S, Akamine Y, Talara M, Mag-usara V, Kitahara H, Kato H, Shiihara M, Tani M and Watanabe M; Sci. Rep,. 2020, 10, 1158. DOI: https://doi.org/10.1038/s41598-020-58085-5
[44] Feng Z, Yu R, Zhou Y, Lu H, Tan W, Deng H, Liu Q, Zhai Z, Zhu L, Cai J, Miao B and Ding H; Adv. Opt. Mater., 2018, 6, 1800965. DOI: https://doi.org/10.1002/adom.201800965
[45] Bandyopadhyay S and Cahay M; Physica E, 2005, 27, 98-103. DOI: https://doi.org/10.1016/j.physe.2004.10.012
[46] Freitas P P, Ferreira R and Cardoso S; Proc. IEEE, 2016, 104, 1894-1918. DOI: https://doi.org/10.1109/JPROC.2016.2578303
[47] Liu X, Lam K H, Zhu K, Zheng C, Li X, Du Y, Liu C and Pong P W T; IEEE Trans. On Magn., 2019, 55, 1-22. DOI: https://doi.org/10.1109/TMAG.2019.2927457
[48] Wang Y, Li J, Viehland D; Mater. Today, 2014, 17, 269-275. DOI: https://doi.org/10.1016/j.mattod.2014.05.004
[49] Zutic I, Fabian J and Sarma S D; Appl. Phys. Lett., 2001, 79, 1558. DOI: https://doi.org/10.1063/1.1399002
[50] Zutic I, Fabian J and Sarma S D; Phys. Rev. B, 2001, 64, 121201 (R). DOI: https://doi.org/10.1103/PhysRevB.64.121201
[51] Endres B, Ciorga M, Schmid M, Utz M, Bougeard D, Weiss D, Bayreuther G and Back C H; Nat. Commun., 2013, 4, 2068. DOI: https://doi.org/10.1038/ncomms3068
Cite This Article
  • APA Style

    Bushra Irfan. (2021). Spintronics: Overview on Spin Based Electronics and Its Potential Applications. International Journal of Materials Science and Applications, 10(5), 94-97. https://doi.org/10.11648/j.ijmsa.20211005.11

    Copy | Download

    ACS Style

    Bushra Irfan. Spintronics: Overview on Spin Based Electronics and Its Potential Applications. Int. J. Mater. Sci. Appl. 2021, 10(5), 94-97. doi: 10.11648/j.ijmsa.20211005.11

    Copy | Download

    AMA Style

    Bushra Irfan. Spintronics: Overview on Spin Based Electronics and Its Potential Applications. Int J Mater Sci Appl. 2021;10(5):94-97. doi: 10.11648/j.ijmsa.20211005.11

    Copy | Download

  • @article{10.11648/j.ijmsa.20211005.11,
      author = {Bushra Irfan},
      title = {Spintronics: Overview on Spin Based Electronics and Its Potential Applications},
      journal = {International Journal of Materials Science and Applications},
      volume = {10},
      number = {5},
      pages = {94-97},
      doi = {10.11648/j.ijmsa.20211005.11},
      url = {https://doi.org/10.11648/j.ijmsa.20211005.11},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ijmsa.20211005.11},
      abstract = {Spintronics is a branch of electronics that utilizes the spin of an electron to carry information. Spin is a quantum phenomenon and attracted researchers because it is an ideal way for representing logic “0" and “1" (used in electronics) with spin pointing “up" or “down" with respect to a magnetic field. Therefore, spin imparts itself into a new kind of binary logic of "one" and "zero". These characteristics open a new possibility of spintronics application in various fields such as magnetic storage technology and quantum computers. Spintronics is an emerging field for next-generation nanoelectronic devices to minimize their power consumption (which is the major issue in future microelectronics technology) and increase memory capabilities. This article briefly introduces the fundamentals of spintronics, progress in spintronics and its applications; it also features the current trend and challenging goal in this area.},
     year = {2021}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Spintronics: Overview on Spin Based Electronics and Its Potential Applications
    AU  - Bushra Irfan
    Y1  - 2021/09/11
    PY  - 2021
    N1  - https://doi.org/10.11648/j.ijmsa.20211005.11
    DO  - 10.11648/j.ijmsa.20211005.11
    T2  - International Journal of Materials Science and Applications
    JF  - International Journal of Materials Science and Applications
    JO  - International Journal of Materials Science and Applications
    SP  - 94
    EP  - 97
    PB  - Science Publishing Group
    SN  - 2327-2643
    UR  - https://doi.org/10.11648/j.ijmsa.20211005.11
    AB  - Spintronics is a branch of electronics that utilizes the spin of an electron to carry information. Spin is a quantum phenomenon and attracted researchers because it is an ideal way for representing logic “0" and “1" (used in electronics) with spin pointing “up" or “down" with respect to a magnetic field. Therefore, spin imparts itself into a new kind of binary logic of "one" and "zero". These characteristics open a new possibility of spintronics application in various fields such as magnetic storage technology and quantum computers. Spintronics is an emerging field for next-generation nanoelectronic devices to minimize their power consumption (which is the major issue in future microelectronics technology) and increase memory capabilities. This article briefly introduces the fundamentals of spintronics, progress in spintronics and its applications; it also features the current trend and challenging goal in this area.
    VL  - 10
    IS  - 5
    ER  - 

    Copy | Download

Author Information
  • Department of Physics, Aligarh Muslim University (AMU), Aligarh, India

  • Sections