We successfully developed a new transmission-type GaAs/GaAsP strained superlattice photocathode with an AlGaAs transparent inter-layer and Si3N4 anti-reflection coating. The electrons emitted from this photocathode showed a high spin polarization of 90% with a quantum efficiency as high as 0.4%. In the application for spin-polarized low energy electron microscope, a high emission current of over 1 µA was observed at 3.6 mW pump laser power. Transmission electron microscopy observation revealed that there were a small disorder and some dislocations in the GaAs/GaAsP superlattice layers. The disordered superlattice layers result in a fluctuation of the superlattice band structure and the dislocations trap the photo-electrons during the diffusion to the surface. Both of the defects influenced the performance of spin-polarized photocathode.
Published in | International Journal of Materials Science and Applications (Volume 5, Issue 4) |
DOI | 10.11648/j.ijmsa.20160504.11 |
Page(s) | 178-182 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2016. Published by Science Publishing Group |
Spin Polarization, Photocathode, Superlattice, Microscopy
[1] | F. Lin, A. Bogacz, P. Brindza, Proceeding of IPAC2015 (2015) 1302. |
[2] | Y. Jing, V. N. Litvinenko, D. Trbojevic, Proceeding of IPAC2015 (2015) 757. |
[3] | S. Komamiya, Proceeding of IPAC2016 (2016) 1. |
[4] | B. List, L. Hagge, N. J. Walker, Proceeding of IPAC2016 (2016) 51. |
[5] | M. Kuwahara, S. Kusunoki, Y. Nambo, K. Saitoh, X. G. Jin, T. Ujihara, H. Asano, Y. Takeda, N. Tanaka, Appl. Phys. Lett., 105 (2014) 193101. |
[6] | K. Yoshida, K. Murakami, J. Fujita, J. Vac. Sci. Technol. B32 (2014) 06FC02. |
[7] | O. Romanyuk, S. F. Garrido, P. Jiricek, I. Bartos, L. Geelhaar, O. Brandt, T. Taskova, Appl. Phys. Lett. 106 (2015) 021602. |
[8] | D. Yu, C. Math, M. Neier, M. Escher, G. Rangelov, M. Donath, Surf. Sci. 601 (2007) 5803. |
[9] | T. Omori, Y. Kurihara, Y. Takeuchi, M. Yoshioka, T. Nakanishi, S. Okumi, M. Tsubata, M. Tawada, K. Togawa, Y. Tanimoto, C. Takahashi, T. Baba, M. Mizuta, Jpn. J. Appl. PHys. 33 (1994) 5676. |
[10] | K. Togawa, T. Nakanishi, T. Baba, F. Furuta, H. Horinaka, Y. Kurihara, H. Matsumoto, T. Matsuyama, T. Nishitani, S. Okumi, T. Omori, C. Suzuki, Y. Takeuchi, K. Wada, M. Yamamoto, M. Yoshioka, Nucl. Instrum. Methods Phys. Res. A 455 (2000) 118. |
[11] | T. Nishitani, T. Nakanishi, M. Yamamoto, S. Okumi, F. Furuta, M. Miyamoto, M. Kuwahara, N. Yamamoto, and K. Naniwa, H. Horinaka. T. Matsuyama, K. Togawa, T. Saka, M. Tawada, T. Omori, Y. Kurihara, M. Yoshioka, K. Kato, and T. Baba, J. Appl. Phys. 97 (2005) 094907. |
[12] | Yu. A. Mamaev, L. G. Gerchikov, Yu. P. Yashin, D. A. Vasiliev, V. V. Kuzmichev, V. M. Ustinov, A. E. Zhukov, V. S. Mikhrin, A. P. Vasiliev, Appl. Phys. Lett. 93 (2008) 81114. |
[13] | N. Yamamoto, T. Nakanishi, A. Mano, Y. Nakagawa, S. Okumi, M. Yamamoto, T. Konomi, X. G. Jin, T. Ujihara, Y. Takeda, T. Ohshima, T. Saka, T. Kato, H. Horinaka, T. Yasue, T. Koshikawa, M. Kuwahara, J. Appl. Phys. 103 (2008) 064905. |
[14] | X. G. Jin, N. Yamamoto, Y. Nakagawa, A. Mano, T. Kato, M. Tanioku, T. Ujihara, Y. Takeda, S. Okumi, M. Yamamoto, T. Nakanishi, T. Saka, H. Horinaka, T. Kato, T. Yasue, T. Koshikawa, Appl. Phys. Express 1 (2008) 045002. |
[15] | X. G. Jin, Y. Maeda, T. Saka, M. Tanioku, S. Fuchi, T. Ujihara, Y. Takeda, N. Yamamoto, Y. Nakagawa, A. Mano, S. Okumi, M. Yamamoto, T. Nakanishi, H. Horinaka, T. Kato, T. Yasue, and T. Koshikawa, J. Cryst. Growth 310 (2008) 5039. |
[16] | T. Saka, Y. Ishida, M. Kanda, X. G. Jin, Y. Maeda, S. Fuchi, Y. Takeda, T. Matsuyama, H. Horinaka, T. Kato, N. Yamamoto, A. Mano, Y. Nakagawa, M. Kuwahara, S. Okumi, T. Nakanishi, M. Yamamoto, T. Ohshima, T. Kohashi, M. Suzuki, M. Hashimoto, T. Yasue, T. Koshikawa, e-J. Surf. Sci. Nanotech. 8 (2010) 125. |
[17] | Chris G. Van de Walle, Phys. Rev. B39 (1989) 1871. |
[18] | S. Gasiorowicz, in Quantum Physics, Chapter 5, Ed. C. Mills, (John Wiley & Sons, Inc., New York, 1996). |
[19] | X. G. Jin, H. Nakahara, K. Saitoh, T. Saka, T. Ujihara, N. Tanaka, Y. Takeda, J. Cryst. Growth 353 (2012) 84. |
[20] | H. M. Cox, D. E. Aspnes, S. J. Allen, P. Bastos, D. M. Hwang, S. Mahajan, M. A. Shahid, P. C. Morais, Appl. Phys. Lett. 57 (1990) 611. |
[21] | M. Suzuki, M. Hashimoto, T. Yasue, T. Koshikawa, Y. Nakagawa, T. Konomi, A. Mano, N. Yamamoto, M. Kuwahara, M. Yamamoto, S. Okumi, T. Nakanishi, X. G. Jin, T. Ujihara, Y. Takeda, T. Kohashi, T. Oshima, T. Saka, T. Kato, H. Horinaka, Appl. Phys. Express 3 (2010) 026601. |
APA Style
Xiuguang Jin, Fumiaki Ichihashi, Atsushi Mano, Masahiko Suzuki, Tsuneo Yasue, et al. (2016). Improvement of Quantum Efficiency in Transmission-Type Spin-Polarized Photocathode. International Journal of Materials Science and Applications, 5(4), 178-182. https://doi.org/10.11648/j.ijmsa.20160504.11
ACS Style
Xiuguang Jin; Fumiaki Ichihashi; Atsushi Mano; Masahiko Suzuki; Tsuneo Yasue, et al. Improvement of Quantum Efficiency in Transmission-Type Spin-Polarized Photocathode. Int. J. Mater. Sci. Appl. 2016, 5(4), 178-182. doi: 10.11648/j.ijmsa.20160504.11
AMA Style
Xiuguang Jin, Fumiaki Ichihashi, Atsushi Mano, Masahiko Suzuki, Tsuneo Yasue, et al. Improvement of Quantum Efficiency in Transmission-Type Spin-Polarized Photocathode. Int J Mater Sci Appl. 2016;5(4):178-182. doi: 10.11648/j.ijmsa.20160504.11
@article{10.11648/j.ijmsa.20160504.11, author = {Xiuguang Jin and Fumiaki Ichihashi and Atsushi Mano and Masahiko Suzuki and Tsuneo Yasue and Takanori Koshikawa and Yoshikazu Takeda}, title = {Improvement of Quantum Efficiency in Transmission-Type Spin-Polarized Photocathode}, journal = {International Journal of Materials Science and Applications}, volume = {5}, number = {4}, pages = {178-182}, doi = {10.11648/j.ijmsa.20160504.11}, url = {https://doi.org/10.11648/j.ijmsa.20160504.11}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ijmsa.20160504.11}, abstract = {We successfully developed a new transmission-type GaAs/GaAsP strained superlattice photocathode with an AlGaAs transparent inter-layer and Si3N4 anti-reflection coating. The electrons emitted from this photocathode showed a high spin polarization of 90% with a quantum efficiency as high as 0.4%. In the application for spin-polarized low energy electron microscope, a high emission current of over 1 µA was observed at 3.6 mW pump laser power. Transmission electron microscopy observation revealed that there were a small disorder and some dislocations in the GaAs/GaAsP superlattice layers. The disordered superlattice layers result in a fluctuation of the superlattice band structure and the dislocations trap the photo-electrons during the diffusion to the surface. Both of the defects influenced the performance of spin-polarized photocathode.}, year = {2016} }
TY - JOUR T1 - Improvement of Quantum Efficiency in Transmission-Type Spin-Polarized Photocathode AU - Xiuguang Jin AU - Fumiaki Ichihashi AU - Atsushi Mano AU - Masahiko Suzuki AU - Tsuneo Yasue AU - Takanori Koshikawa AU - Yoshikazu Takeda Y1 - 2016/08/08 PY - 2016 N1 - https://doi.org/10.11648/j.ijmsa.20160504.11 DO - 10.11648/j.ijmsa.20160504.11 T2 - International Journal of Materials Science and Applications JF - International Journal of Materials Science and Applications JO - International Journal of Materials Science and Applications SP - 178 EP - 182 PB - Science Publishing Group SN - 2327-2643 UR - https://doi.org/10.11648/j.ijmsa.20160504.11 AB - We successfully developed a new transmission-type GaAs/GaAsP strained superlattice photocathode with an AlGaAs transparent inter-layer and Si3N4 anti-reflection coating. The electrons emitted from this photocathode showed a high spin polarization of 90% with a quantum efficiency as high as 0.4%. In the application for spin-polarized low energy electron microscope, a high emission current of over 1 µA was observed at 3.6 mW pump laser power. Transmission electron microscopy observation revealed that there were a small disorder and some dislocations in the GaAs/GaAsP superlattice layers. The disordered superlattice layers result in a fluctuation of the superlattice band structure and the dislocations trap the photo-electrons during the diffusion to the surface. Both of the defects influenced the performance of spin-polarized photocathode. VL - 5 IS - 4 ER -