The layered Li-rich Li[Li0.13Mn0.464Ni0.203Co0.203]O2 cathode material was successfully synthesized via a hydrothermal treatment on the precursor method. X-ray diffraction spectrometry (XRD) and scanning electron microscopy (SEM) were used to characterize the structure and micromorphology of the materials. Meanwhile, charge-discharge test and electrochemical impedance spectroscopy (EIS) were employed to explore its electrochemical performance. The results indicate that the Li[Li0.13Mn0.464Ni0.203Co0.203]O2 material possesses a layered α-NaFeO2 structure and exhibits excellent electrochemical performance. The initial discharge capacity is 235.9 mAh•g−1 in the voltage range of 2.0-4.8 V at 0.1 C. And it exhibits the capacity retention of 94.1% after 50 cycles. The hydrothermal treatment not only shortens the calcination time, but also can greatly improve the electrochemical performance of the material.
Published in | International Journal of Materials Science and Applications (Volume 5, Issue 3) |
DOI | 10.11648/j.ijmsa.20160503.14 |
Page(s) | 136-142 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2016. Published by Science Publishing Group |
Lithium-ion Battery, Hydrothermal, Li-rich, Cathode Material
[1] | J. Y. Kim, and D. Y. Lim, “Surface-Modified Membrane as A Separator for Lithium-Ion Polymer Battery,” Energies, vol. 3, pp. 866-885 |
[2] | F. Y. Cheng, Z. L. Tao, J. Liang, and J. Chen, “Template-Directed Materials for Rechargeable Lithium-ion Batteries,” Chem. Mater., Vol. 20, pp. 667-681 |
[3] | M. S. Whittingham, “Lithium Batteries and Cathode Materials,” Chem. Rev., Vol. 104, pp. 4271-4302 |
[4] | C. Delmas, G. Prado, A. Rougier, E. Suard, and L. Fournes, “Effect of iron on the electrochemical behaviour of lithium nickelate: from LiNiO2 to 2D-LiFeO2,” Solid State Ionics, Vol. 135, pp. 71-79 |
[5] | C. Jaephil, and P. Byungwoo, “Preparation and electrochemical/thermal properties of LiNi0.74Co0.26O2 cathode material,” J. Power Sources, Vol. 92, pp. 35-39 |
[6] | T. Ohzuku, and N. Yabuuchi, “Novel lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for advanced lithium-ion batteries,” J. Power Sources, Vol. 119, pp. 171-174 |
[7] | C. S. Johnson, N. Li, and C. Lefief, “Anomalous capacity and cycling stability of xLi2MnO3•(1 − x)LiMO2 electrodes (M = Mn, Ni, Co) in lithium batteries at 50°C,” Electrochem. Commun., Vol. 9, pp. 787-795 |
[8] | Y. Wu, and A. Manthiram, “High Capacity, Surface-Modified Layered Li[Li(1-x)/3Mn(2-x)/3Nix/3Cox/3]O2 Cathodes with Low Irreversible Capacity Loss,” Electrochem. Solid-State Lett., Vol. 9, pp. A221-A224 |
[9] | Y. Zhang, P. Hou, E. Zhou, X. Shi, X. Wang, D. Song, J. Guo, and L. Zhang, “Pre-heat treatment of carbonate precursor firstly in nitrogen and then oxygen atmospheres: A new procedure to improve tap density of high-performance cathode material Li1.167 (Ni0.139Co0.139Mn0.556)O2 for lithium ion batteries,” J. Power Sources, Vol. 292, pp. 58-65 |
[10] | E. Zhao, X. Liu, Z. Hu, L. Sun, and X. Xiao, “Facile synthesis and enhanced electrochemical performances of Li2TiO3-coated lithium-rich layered Li1.13Ni0.30Mn0.57O2 cathode materials for lithium-ion batteries,” J. Power Sources, Vol. 294, pp. 141-149 |
[11] | X. Wei, S. Zhang, Z. Du, P. Yang, J. Wang, and Y. Ren, “Electrochemical performance of high-capacity nanostructured Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material for lithium ion battery by hydrothermal method,” Electrochim. Acta, Vol. 107, pp. 549-554 |
[12] | C. H. Song, A. M. Stephan, A. Kim, and K. S. Nahm, “Influence of Solvents on the Structural and Electrochemical Properties of Li[Li0.2Ni0.1Co0.2Mn0.5]O2 Prepared by a Solvothermal Reaction Method,” J. Electrochem. Soc., Vol. 153, pp. A390-A395 |
[13] | H. Huang, and P. G. Bruce, A 4 V Lithium Manganese Oxide Cathode for Rocking-Chair Lithium-Ion Cells, J. Electrochem. Soc., Vol. 141, pp. L106-L107 |
[14] | D. Chen, Q. Yu, X. Xiang, M. Chen, Z. Chen, S. Song, L. Xiong, Y. Liao, L. Xing, and W. Li, “Porous layered lithium-rich oxide nanorods: Synthesis and performances as cathode of lithium ion battery,” Electrochim. Acta, Vol. 154, pp. 83-93 |
[15] | J. Gao, J. Kim, and A. Manthiram, “High capacity Li[Li0.2Mn0.54Ni0.13Co0.13]O2-V2O5 composite cathodes with low irreversible capacity loss for lithium ion batteries,” Electrochem. Commun., Vol. 11, pp. 84-86 |
[16] | J. H. Lim, H. Bang, K. S. Lee, K. Amine, and Y. K. Sun, “Electrochemical characterization of Li2MnO3-Li[Ni1/3Co1/3Mn1/3]O2-LiNiO2 cathode synthesized via co-precipitation for lithium secondary batteries,” J. Power Sources, Vol. 189, pp. 571-575 |
[17] | S. H. Kang, and M. M. Thackeray, “Enhancing the rate capability of high capacity xLi2MnO3•(1-x)LiMO2 (M=Mn, Ni, Co) electrodes by Li-Ni-PO4 treatment,” Electrochem. Commun., Vol. 11, pp. 748-751 |
[18] | X. J. Guo, Y. X. Li, M. Zheng, J. M. Zheng, J. Li, Z. L. Gong, and Y. Yang, “Structural and electrochemical characterization of xLi[Li1/3Mn2/3]O2•(1-x)Li[Ni1/3Mn1/3Co1/3]O2 (0 ≤x ≤0.9) as cathode materials for lithium ion batteries,” J. Power Sources, Vol. 184, pp. 414-419 |
[19] | J. M. Zheng, X. B. Wu, and Y. Yang, “A comparison of preparation method on the electrochemical performance of cathode material Li[Li0.2Mn0.54Ni0.13Co0.13]O2 for lithium ion battery,” Electrochim. Acta, Vol. 56, pp. 3071-3078 |
[20] | S. H. Kang, P. Kempgens, S. Greenbaum, A. J. Kropf, K. Amine, and M. M. Thackeray, “Interpreting the structural and electrochemical complexity of 0.5Li2MnO3•0.5LiMO2 electrodes for lithium batteries (M=Mn0.5-xNi0.5-xCo2x, 0 ≤x ≤0.5),” J. Mater. Chem., Vol. 17, pp. 2069-2077 |
[21] | S. J. Shi, J. P. Tu, Y. Y. Tang, Y. X. Yu, Y. Q. Zhang, X. L. Wang, and C. D. Gu, “Combustion synthesis and electrochemical performance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 with improved rate capability,” J. Power Sources, Vol. 228, pp. 14-23 |
[22] | A. Francis, K. Daniela, T. Michael, Z. Leila, G. Judith, L. Nicole, G. Gil, M. Boris, and A. Doron, “Synthesis of Integrated Cathode Materials xLi2MnO3•(1-x)LiMn1/3Ni1/3Co1/3O2 (x=0.3, 0.5, 0.7) and Studies of Their Electrochemical Behavior,” J. Electrochem. Soc., Vol. 157, pp. A1121-A1126 |
[23] | G. Y. Kim, S. B. Yi, Y. J. Park, and H. G. Kim, “Electrochemical behaviors of Li[Li(1−x)/3Mn(2−x)/3Nix/3Cox/3]O2 cathode series (0 <x <1) synthesized by sucrose combustion process for high capacity lithium ion batteries,” Mater. Res. Bull., Vol. 43, pp. 3543-3552 |
[24] | S. J. Shi, J. P. Tu, Y. Y. Tang, Y. Q. Zhang, X. L. Wang, and C. D. Gu, “Preparation and characterization of macroporous Li1.2Mn0.54Ni0.13Co0.13O2 cathode material for lithium-ion batteries via aerogel template,” J. Power Sources, Vol. 240, pp. 140. |
[25] | F. Zhou, X. M. Zhao, A. Bommel, A. W. Rowe, and J. R. Dahn, “Coprecipitation Synthesis of NixMn1-x (OH) 2 Mixed Hydroxides,” Chem. Mater., Vol. 22, pp. 1015-1021 |
[26] | K. Lee, S. Myung, J. Moon, and Y. Sun, “Particle size effect of Li[Ni0.5Mn0.5]O2 prepared by co-precipitation,” Electrochim. Acta, Vol. 53, pp. 6033-6037 |
[27] | H. Bang, B. Park, J. Prakash, Y. Sun, “Synthesis and electrochemical properties of Li[Ni0.45Co0.1Mn0.46-xZrx]O2 (x=0, 0.02) via co-precipitation method,” J. Power Sources, Vol. 174, pp. 565-568 |
[28] | L. Zhang, K. Jin, L. Wang, Y. Zhang, X. Li, and Y. Song, “High capacity Li1.2Mn0.54Ni0.13Co0.13O2 cathode materials synthesized using mesocrystal precursors for lithium-ion batteries,” J. Alloys Comp., Vol. 638, pp. 298-304 |
[29] | Z. H. Lu, L. Y. Beaulieu, R. A. Donaberger, C. L. Thomas, J. R. Dahn, “Synthesis, Structure, and Electrochemical Behavior of Li[NixLi1/3-2x/3Mn2/3-x/3]O2,” J. Electrochem. Soc., Vol. 149, pp. A778-A791 |
[30] | M. M. Thackeray, S. H. Kang, C. S. Johnson, J. T. Vaughey, R. Benedek, and S. A. Hackney, “Li2MnO3-stabilized LiMO2 (M=Mn, Ni, Co) electrodes for lithium-ion batteries,” J. Mater. Chem., Vol. 17, pp. 3112-3125 |
[31] | C. W. Park, S. H. Kim, I. Ruth Mangani, J. H. Lee, S. Boo, and J. Kim, “Synthesis and materials characterization of Li2MnO3-LiCrO2 system nanocomposite electrode materials,” Mater. Res. Bull., Vol. 42, pp. 1374-1383 |
[32] | Z. Lu, and J. R. Dahn, “In Situ and Ex Situ XRD Investigation of Li[CrxLi1/3-x/3Mn2/3-2x/3]O2 (x=1/3) Cathode material Batteries,” J. Electrochem. Soc., Vol. 150, pp. A1044-A1051 |
[33] | B. Hwang, R. Santhanam, and C. Chen, “Effect of synthesis conditions on electrochemical properties of LiNi1−yCoyO2 cathode for lithium rechargeable batteries,” J. Power Sources, Vol. 114, pp. 244-252 |
[34] | R. Alcantara, P. Lavela, J. Tirado, R. Stoyanova, and E. Zhecheva, “Changes in Structure and Cathode Performance with Composition and Preparation Temperature of Lithium Cobalt Nickel Oxide,” J. Electrochem. Soc., Vol. 145, pp. 730-736 |
[35] | Z. Chang, Z. Chen, F. Wu, H. Tang, Z. Zhu, X. Z. Yuan, and H. Wang, “Synthesis and characterization of high-density non-spherical Li(Ni1/3Co1/3Mn1/3)O2 cathode material for lithium ion batteries by two-step drying method,” Electrochim. Acta, Vol. 53, pp. 5927-5933 |
[36] | Z. L. Liu, A. S. Yu, and J. Y. Lee, “Synthesis and characterization of LiNi1-x-yCoxMnyO2 as the cathode materials of secondary lithium batteries,” J. Power Sources, Vol. 81, pp. 416-419 |
[37] | D. Mohanty, S. Kalnaus, R. A. Meisner, K. J. Rhodes, J. L. Li, E. A. Payzant, D. L. Wood, and C. Daniel, “Structural transformation of a lithium-rich Li1.2Co0.1Mn0.55Ni0.15O2 cathode during high voltage cycling resolved by in situ X-ray diffraction,” J. Power Sources, Vol. 229, pp. 239-248 |
[38] | G. B. Liu, H. Liu, Y. F. Shi, “The synthesis and electrochemical properties of xLi2MnO3-(1-x)MO2 (M=Mn1/3Ni1/3Fe1/3) via co-precipitation method,” Electrochim. Acta, Vol. 88, pp. 112-116 |
[39] | B. H. Song, Z. W. Liu, M. O. Lai, and L. Lu, “Structural evolution and the capacity fade mechanism upon long-term cycling in Li-rich cathode material,” Chem. Chem. Phys., Vol. 14, pp. 12875-12883 |
[40] | W. S. Yoon, N. Kim, X. Q. Yang, J. McBreen, and C. P. Grey, “6Li MAS NMR and in situ X-ray studies of lithium nickel manganese oxides,” J. Power Sources, Vol. 119, pp. 649-653 |
[41] | J. Zhang, X. Guo, S. Yao, W. Zhu, and X. Qiu, “Tailored synthesis of Ni0.25Mn0.75CO3 spherical precursors for high capacity Li-rich cathode materials via a urea-based precipitation method,” J. Power Sources, Vol. 238, pp. 245-250 |
[42] | N. Yabuuchi, K. Yoshii, S. T. Myung, I. Nakai, and S. Komaba, “Detailed Studies of a High-Capacity Electrode Material for Rechargeable Batteries, Li2MnO3-LiCo1/3Ni1/3Mn1/3O2,” J. Am. Chem. Soc., Vol. 133, pp. 4404-4419 |
[43] | Z. Lu, and J. Dahn, “Understanding the Anomalous Capacity of Li/Li[NixLi(1/3-2x/3)Mn(2/3-x/3)O2 Cells Using In Situ X-Ray,” Electrochem. Soc., Vol. 149, pp. A815-A822 |
[44] | A. Robertson, and P. Bruce, “Overcapacity of Li[NixLi1/3-2x/3Mn2/3-x/3]O2 Electrodes,” Electrochem. Solid State Lett., Vol. 7, pp. A294-A298 |
[45] | A. R. Armstrong, M. Holzapfel, P. Novak, C. Johnson, S. Kang, M. Thackeray, and P. Bruce, “Demonstrating Oxygen Loss and Associated Structural Reorganization in the Lithium Battery Cathode Li[Ni0.2Li0.2Mn0.6]O2,” J. Am. Chem. Soc., Vol. 128, pp. 8694-8698 |
[46] | F. Wu, M. Wang, Y. Su, L. Bao, and S. Chen, “A novel method for synthesis of layered LiNi1/3Mn1/3Co1/3O2 as cathode material for lithium-ion battery,” J. Power Sources, Vol. 195, pp. 2362-2367 |
[47] | J. Zheng, S. Deng, Z. Shi, H. Xu, Y. Deng, Z. Zhang, and G. Chen, “The effects of persulfate treatment on the electrochemical properties of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material,” J. Power Sources, Vol. 221, pp. 108-113 |
[48] | J. J. Wang, G. Yuan, M. Zhang, B. Qiu, Y. Xia, and Z. Liu, “The structure, morphology, and electrochemical properties of Li1+xNi1/6Co1/6Mn4/6O2.25+x/2 (0.1 ≤x ≤0.7) cathode materials,” Electrochim. Acta, Vol. 66, pp. 61-66 |
[49] | A. Ito, D. Li, Y. Sato, M. Arao, M. Watanabe, M. Hatano, H. Horie, and Y. Ohsaw, “Cyclic deterioration and its improvement for Li-rich layered cathode material Li[Ni0.17Li0.2Co0.07Mn0.56]O2,” J. Power Sources, Vol. 195, pp. 567-573 |
[50] | J. Park, J. H. Seo, G. Plett, W. Lu, and A. M. Sastry, “Numerical Simulation of the Effect of the Dissolution of LiMn2O4 Particles on Li-Ion Battery Performance,” Electrochem. Solid State Lett., Vol. 14, pp. A14-A18 |
[51] | D. H. Jang, Y. J. Shin, and S. M. Oh, “Dissolution of Spinel Oxides and Capacity Losses in 4 V Li/LixMn2O4 Cells,” J. Electrochem. Soc., Vol. 143, pp. 2204-2211 |
[52] | M. Wohlfahrt-Mehrens, C. Vogler, and J. Garche, “Aging mechanisms of lithium cathode materials,” J. Power Sources, Vol. 127, pp. 58-64 |
[53] | M. D. Levi, K. Gamolsky, D. Aurbach, U. Heider, and R. Oesten, “On electrochemical impedance measurements of LixCo0.2Ni0.8O2 and LixNiO2 intercalation electrodes,” Electrochim. Acta, Vol. 45, pp. 1781-1789 |
[54] | S. A. Mamuru, K. I. Ozoemena, T. Fukuda, and N. Kobayashi, “Iron (II) tetrakis (diaquaplatinum) octacarbixyphthalocyanine supported on multi-walled carbon nanotube platform: an efficient functional material for enhancing electron transfer kinetics and electrocatalytic oxidation of formic acid,” J. Mater. Chem., Vol. 20, pp. 10705-10715 |
[55] | H. W. Ha, N. J. Yun, and K. Kim, “Improvement of electrochemical stability of LiMn2O4 by CeO2 coating for lithium-ion batteries,” Electrochim. Acta, Vol. 52, pp. 3236-3241 |
[56] | Q. Cao, H. P. Zhang, G. J. Wang, Q. Xia, Y. P. Wu, and H. Q. Wu, “A novel carbon-coated LiCoO2 as cathode material for lithium ion battery,” Electrochem. Commun., Vol. 9, pp. 1228-1232 |
[57] | C. J. Jafta, K. I. Ozoemena, M. K. Mathe, and W. D. Roos, “Synthesis, characterisation and electrochemical intercalation kinetics of nanostructured aluminium-doped Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material for lithium ion battery,” Electrochim. Acta, Vol. 85, pp. 411-422 |
[58] | K. G. Gallagher, J. R. Croy, M. Balasubramanian, M. Bettge, D. P. Abraham, A. K. Burrell, and M. M. Thackeray, “Correlating hysteresis and voltage fade in lithium- and manganese-rich layered transition-metal oxide electrodes,” Electrochem. Commun., Vol. 33, pp. 96-98 |
APA Style
Wang Meng, Li Wei, Yang Tao, Wu Feng. (2016). Synthesis of Li[Li0.13Mn0.464Ni0.203Co0.203]O2 Cathode Material by Hydrothermal Treatment Method. International Journal of Materials Science and Applications, 5(3), 136-142. https://doi.org/10.11648/j.ijmsa.20160503.14
ACS Style
Wang Meng; Li Wei; Yang Tao; Wu Feng. Synthesis of Li[Li0.13Mn0.464Ni0.203Co0.203]O2 Cathode Material by Hydrothermal Treatment Method. Int. J. Mater. Sci. Appl. 2016, 5(3), 136-142. doi: 10.11648/j.ijmsa.20160503.14
AMA Style
Wang Meng, Li Wei, Yang Tao, Wu Feng. Synthesis of Li[Li0.13Mn0.464Ni0.203Co0.203]O2 Cathode Material by Hydrothermal Treatment Method. Int J Mater Sci Appl. 2016;5(3):136-142. doi: 10.11648/j.ijmsa.20160503.14
@article{10.11648/j.ijmsa.20160503.14, author = {Wang Meng and Li Wei and Yang Tao and Wu Feng}, title = {Synthesis of Li[Li0.13Mn0.464Ni0.203Co0.203]O2 Cathode Material by Hydrothermal Treatment Method}, journal = {International Journal of Materials Science and Applications}, volume = {5}, number = {3}, pages = {136-142}, doi = {10.11648/j.ijmsa.20160503.14}, url = {https://doi.org/10.11648/j.ijmsa.20160503.14}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ijmsa.20160503.14}, abstract = {The layered Li-rich Li[Li0.13Mn0.464Ni0.203Co0.203]O2 cathode material was successfully synthesized via a hydrothermal treatment on the precursor method. X-ray diffraction spectrometry (XRD) and scanning electron microscopy (SEM) were used to characterize the structure and micromorphology of the materials. Meanwhile, charge-discharge test and electrochemical impedance spectroscopy (EIS) were employed to explore its electrochemical performance. The results indicate that the Li[Li0.13Mn0.464Ni0.203Co0.203]O2 material possesses a layered α-NaFeO2 structure and exhibits excellent electrochemical performance. The initial discharge capacity is 235.9 mAh•g−1 in the voltage range of 2.0-4.8 V at 0.1 C. And it exhibits the capacity retention of 94.1% after 50 cycles. The hydrothermal treatment not only shortens the calcination time, but also can greatly improve the electrochemical performance of the material.}, year = {2016} }
TY - JOUR T1 - Synthesis of Li[Li0.13Mn0.464Ni0.203Co0.203]O2 Cathode Material by Hydrothermal Treatment Method AU - Wang Meng AU - Li Wei AU - Yang Tao AU - Wu Feng Y1 - 2016/06/07 PY - 2016 N1 - https://doi.org/10.11648/j.ijmsa.20160503.14 DO - 10.11648/j.ijmsa.20160503.14 T2 - International Journal of Materials Science and Applications JF - International Journal of Materials Science and Applications JO - International Journal of Materials Science and Applications SP - 136 EP - 142 PB - Science Publishing Group SN - 2327-2643 UR - https://doi.org/10.11648/j.ijmsa.20160503.14 AB - The layered Li-rich Li[Li0.13Mn0.464Ni0.203Co0.203]O2 cathode material was successfully synthesized via a hydrothermal treatment on the precursor method. X-ray diffraction spectrometry (XRD) and scanning electron microscopy (SEM) were used to characterize the structure and micromorphology of the materials. Meanwhile, charge-discharge test and electrochemical impedance spectroscopy (EIS) were employed to explore its electrochemical performance. The results indicate that the Li[Li0.13Mn0.464Ni0.203Co0.203]O2 material possesses a layered α-NaFeO2 structure and exhibits excellent electrochemical performance. The initial discharge capacity is 235.9 mAh•g−1 in the voltage range of 2.0-4.8 V at 0.1 C. And it exhibits the capacity retention of 94.1% after 50 cycles. The hydrothermal treatment not only shortens the calcination time, but also can greatly improve the electrochemical performance of the material. VL - 5 IS - 3 ER -