| Peer-Reviewed

First-Principles Calculation for Thermodynamic Properties of LiD

Received: 17 May 2016     Published: 19 May 2016
Views:       Downloads:
Abstract

In this paper, the lattice parameter and bulk modulus of LiD at different pressures and temperatures are calculated by using the density functional theory method within the generalized gradient approximation (GGA). Through the quasi-harmonic Debye model, the thermodynamic properties of the LiD are predicted. The dependences of the normalized primitive cell volume V/V0 on pressure P, the variation of the thermal expansion coefficient α with pressure P and temperature T, as well as the dependences pf the heat capacity Cv on pressure P and temperature T are obtained systematically in the ranges of 0-100GPa and 0-2000K.

Published in International Journal of Materials Science and Applications (Volume 5, Issue 3)
DOI 10.11648/j.ijmsa.20160503.12
Page(s) 125-128
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2016. Published by Science Publishing Group

Keywords

Density Functional Theory, the Quasi-Harmonic Debye Model, Thermodynamic Properties

References
[1] R. Ren, A. L. Ortiz, T. Markmaitree, W. Osborn, and L Leon. Shaw. Stability of lithium hydride in argon and air [J]. J. Phys. Chem. B, 2006, 110: 10567-10575.
[2] L. Schlapbach, A. Züttel, Hydrogen-storage materials for mobile applications [J]. Nature, 2001, 414: 353-358.
[3] Ping Chen, Zhitao Xiong, Jizhong Luo, J Y Lin and K L Tan. Interaction of hydrogen with metal nitride and imides [J]. Nature, 2002, 420: 302-304.
[4] C. Gatti, S. Polezzo, M. Raimondi and M Simonetta. Generalized self-consistent valence bond method for ground and excited potential energy surfaces [J]. Moecular. Physics, 1980, 41 (6): 1259-1279.
[5] W. C. Stwalley, W. T. Zemke Spectroscopy and structure of the lithium hydride diatomic molecules and ions [J]. J. Phys. Chem. Ref. Data, 1993, 22 (1): 87-89.
[6] Xiang-Jian Meng, Jian-Gong Chen, Hong-Juan Ye, Ping-xion Yang, Shan-ling Guo and Jun-hao Chu. Infrared reflection spectra and phonon modes of PbTiO3 polycrystalline thin film. J. Infrared Millim. Waves 18, No 5, 392–396 (1999).
[7] C. R. Vidal, W. C. Stwalley, The A sigma-X sigma system of the isotopic lithium hudrides: the molecular constants, potential energy curves and their adiabatic corrections [J]. J. Chem Phys, 1982, 77: 883-898.
[8] J. A. Coxon, The radial Hamiltonian operator for LiH X1∑+ [J]. J. Mol. Spectrosc, 1992, 152: 274-282.
[9] Zhi-F. Li, W. Lu, J. Infrared Millim. Waves, 22, No 1, 8–12 (2003).
[10] V. E. Fortov, V. V. Yakushev, K L Kagan, et al. 2002 J. Phys. Condens. Matter 14 10809.
[11] Blanco M A, Francisco E and Luana V. 2004 Comput. Phys. Commun 158 57.
[12] Vanderbilt D. 1990 Phys. Rev. B 41 7892.
[13] Hammer B, Hansen L B and Norskov J K. 1999 Phys. Rev. B 59 7413.
[14] Perdew J P, Burke K and Ernzerh of M. 1996 Phys. Rev. Lett 77 3865.
[15] Monkhorst H J and Pack J D. 1976 Phys. Rev. B 13 5188.
[16] Payne M C, Teter M P, Allen D C, Arias T A and Joannopoulos J D. 1992 Rev. Mod. Phys 64 1045.
[17] Milan V, Winker B, White J A, Packard C J, Payne M C, Akhmatskaya E V and Nobes R H. 2002 Int. J. Quantum Chem 77 85.
[18] Blanco M A, Pendás A M, Francisco E, Recio J M and Franco R. 1996 J. Mol Struct 368 245.
[19] Flórez M, Recio J M, Francisco E, Blanco M A and Pendás A M. 2002 Phys. Rev. B 66 144112.
[20] Francisco E, Blanco M A and Sanjurjo G. 2001 Phys. Rev. B 63 094107.
[21] Wang Yanju, Tan Jiajin, Wang Yongliang and Chen Xiangrong. 2007 Chin. Phys. Soc 16 3046.
[22] Wang Chunlei, Yu Benhai, Huo Hailiang, Chen Dong and Sun Hai bin. 2009 Chin. Phys. Soc 18 1248.
[23] Hu Cuie, Zeng Zhaoyi, Cheng Yan, Chen Xiangrong and Cai Lingcang. 2008 Chin. Phys. Soc 17 3867.
Cite This Article
  • APA Style

    Lei Jie-Hong, Gu Yuqiu. (2016). First-Principles Calculation for Thermodynamic Properties of LiD. International Journal of Materials Science and Applications, 5(3), 125-128. https://doi.org/10.11648/j.ijmsa.20160503.12

    Copy | Download

    ACS Style

    Lei Jie-Hong; Gu Yuqiu. First-Principles Calculation for Thermodynamic Properties of LiD. Int. J. Mater. Sci. Appl. 2016, 5(3), 125-128. doi: 10.11648/j.ijmsa.20160503.12

    Copy | Download

    AMA Style

    Lei Jie-Hong, Gu Yuqiu. First-Principles Calculation for Thermodynamic Properties of LiD. Int J Mater Sci Appl. 2016;5(3):125-128. doi: 10.11648/j.ijmsa.20160503.12

    Copy | Download

  • @article{10.11648/j.ijmsa.20160503.12,
      author = {Lei Jie-Hong and Gu Yuqiu},
      title = {First-Principles Calculation for Thermodynamic Properties of LiD},
      journal = {International Journal of Materials Science and Applications},
      volume = {5},
      number = {3},
      pages = {125-128},
      doi = {10.11648/j.ijmsa.20160503.12},
      url = {https://doi.org/10.11648/j.ijmsa.20160503.12},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ijmsa.20160503.12},
      abstract = {In this paper, the lattice parameter and bulk modulus of LiD at different pressures and temperatures are calculated by using the density functional theory method within the generalized gradient approximation (GGA). Through the quasi-harmonic Debye model, the thermodynamic properties of the LiD are predicted. The dependences of the normalized primitive cell volume V/V0 on pressure P, the variation of the thermal expansion coefficient α with pressure P and temperature T, as well as the dependences pf the heat capacity Cv on pressure P and temperature T are obtained systematically in the ranges of 0-100GPa and 0-2000K.},
     year = {2016}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - First-Principles Calculation for Thermodynamic Properties of LiD
    AU  - Lei Jie-Hong
    AU  - Gu Yuqiu
    Y1  - 2016/05/19
    PY  - 2016
    N1  - https://doi.org/10.11648/j.ijmsa.20160503.12
    DO  - 10.11648/j.ijmsa.20160503.12
    T2  - International Journal of Materials Science and Applications
    JF  - International Journal of Materials Science and Applications
    JO  - International Journal of Materials Science and Applications
    SP  - 125
    EP  - 128
    PB  - Science Publishing Group
    SN  - 2327-2643
    UR  - https://doi.org/10.11648/j.ijmsa.20160503.12
    AB  - In this paper, the lattice parameter and bulk modulus of LiD at different pressures and temperatures are calculated by using the density functional theory method within the generalized gradient approximation (GGA). Through the quasi-harmonic Debye model, the thermodynamic properties of the LiD are predicted. The dependences of the normalized primitive cell volume V/V0 on pressure P, the variation of the thermal expansion coefficient α with pressure P and temperature T, as well as the dependences pf the heat capacity Cv on pressure P and temperature T are obtained systematically in the ranges of 0-100GPa and 0-2000K.
    VL  - 5
    IS  - 3
    ER  - 

    Copy | Download

Author Information
  • Research Center of Laser Fusion, National Key Laboratory of Laser Fusion, CAEP, Mianyang, China

  • Research Center of Laser Fusion, National Key Laboratory of Laser Fusion, CAEP, Mianyang, China

  • Sections